Salt marsh

Salt marsh2019-09-16T12:37:26-04:00

Evaluating the Impact of Hydrologic Alterations on Salt Marsh Sustainability in a Changing Climate

Project Title: Evaluating the Impact of Hydrologic Alterations on Salt Marsh Sustainability in a Changing Climate

Project Partners: Cape Cod Mosquito Control Project, Louisiana State University, National Park Service, United States Fish and Wildlife Service, Rachel Carson National Wildlife Refuge, United States Geologic Survey, Waquoit Bay National Estuarine Research Reserve, Woods Hole Oceanographic Institution

Coastal managers are faced with the challenge of managing marsh hydrology in a way that meets human health needs, optimizes ecosystem services, and supports sustainability. In New England this includes accounting for the effects of ditches that were dug decades ago in 90% of the region’s salt marshes.

Ditches increase marsh drainage and reduce the spatial extent of shallow pools that may represent physical loss of buried soil carbon. However, efficient drainage may reduce the long-term sustainability of marshes by altering below ground biogeochemical and physical processes in a way that results in subsidence and lowered marsh elevation. Managers, restoration practitioners, and scientists at the Waquoit Bay National Estuarine Research Reserve, Woods Hole Oceanographic Institution, U.S. Geological Survey, U.S. Fish and Wildlife Service, National Park Service, and the Cape Cod Mosquito Control Project have expressed a need to understand the tradeoffs of hydrologic management strategies (i.e., ditch remediation, density, maintenance) and identify actions that will achieve user-specified outcomes— such as drainage, maintaining elevation, and carbon burial.

This project is a collaboration between scientists and end users to develop decision-support tools for marsh hydrological management strategies that promote sustainability and delivery of valuable ecosystem services under future sea level scenarios.

Products:
FACT SHEET: Project Overview
WHOI Website: Marsh Sustainability & Hydrology
Marshes, Mosquitos & Sea Level Rise-Oceanus Magazine Video Link

Genetic Variation and Adaptation in the Salt Marsh Plant Salicornia depressa

Project Title: Genetic Variation and Adaptation in the Salt Marsh Plant Salicornia depressa

Date: 2019

Principal Investigator:  Brook Moyers,

Affiliations: University of Massachusetts

Summary:  Salicornia are small annual saltwater marsh plants that grow throughout coastal New England and globally. They are edible and have potential uses as agricultural commodities or as phytoremediators of sites contaminated with heavy metals. We are characterizing the genetic diversity and adaptive potential of the most common New England native species, S. depressa, for which little data currently exists. To do so we sequence DNA from individual plants in populations across coastal New England along with the microbial rhizosphere (soil microorganisms closely associated with plant roots). We also analyze the soil in which plants are growing to understand its chemical composition. This research could assist in planning and management of genetic resources and amelioration of industrial/urban contaminants for coastal wetlands, and more broadly will provide insight into the diversity and capacity of this potentially valuable species.

 

Spatial variability of carbon export from tidal marsh drainage

Project Title: Spatial variability of carbon export from tidal marsh drainage

Date: 11/2018-8/2019

Principal Investigator(s): Joseph Tamborski

Affiliations: Woods Hole Oceanographic Institution

Summary: Salt marshes provide significant environmental and economic value by shielding coastal communities against storm-surges and sequestering CO2 from the atmosphere, acting as a natural buffer to climate change. Carbon is both buried by marsh plants and exported to the coastal ocean from tidal drainage. However, the spatial variability of carbon export from tidal drainage across a salt marsh platform is largely unknown. Our two main objectives are to [1] characterize salt marsh hydrology under present and future climate scenarios; and [2] to determine the spatial and temporal variability of carbon export from tidal marsh drainage. Sediment cores, marsh pore waters and vertical temperature profiles will be sampled across marsh platforms, toward the tidal creek, to help reveal spatial patterns in seasonal exchange fluxes. Hydrogeological models will be used to assess salt marsh resiliency to changing climate scenarios. These tasks aim to reveal how salt marshes impact carbon cycling and biogeochemistry of the Northwest Atlantic and identify the vulnerability of these critical wetlands to changing terrestrial and marine conditions.

Phragmites porewater geochemistry

Project Title: Phragmites porewater geochemistry

Date: 6/2019-8/2019

Principal Investigator(s): Meagan Gonneea

Affiliations: U.S. Geological Survey: Woods Hole Coastal and Marine Science Center

Summary: Methane is an important greenhouse gas produced during methanogenesis, a metabolic pathway for decomposing organic matter in saturated soils. Conditions that favor this organic matter decomposition pathway include low salinity and high water levels, conditions that also promote the growth of phragmites. However, methane production in phragmites patches in coastal wetlands is highly variable, indicating that methane production and subsequent flux to the atmosphere are dependent on the geochemical environment. This project will compare methane cycling in phragmites patches at Sage Lot Pond to the Herring River, an impounded salt marsh in Wellfleet, MA, to better understand what environmental drivers impact methane cycling in phragmites coastal wetlands. This project is being conducted by a PEP student with USGS staff.

USGS Drone Flights at Sage Lot Pond

Project Title: USGS Drone Flights at Sage Lot Pond

Date: 7/2017-7/2018

Principal Investigator(s): Kevin Kroeger, Sandy Brosnahan, Meagan Gonneea

Affiliations: USGS

Summary: The U.S. Geological Survey in Woods Hole is developing drone technology applications for salt marsh research. Salt marshes are important coastal ecosystems in terms of habitat for birds and fish, recreational opportunities, coastal protection and as a natural carbon sink. Current scientific challenges involve mapping these environments, including their elevation, morphology, and plant composition, at sufficient spatial resolution and coverage. Current field methods are labor intensive, allowing for small spatial coverage, while satellite based products with broad spatial coverage typically have a spatial resolution that is too coarse to resolve important changes that may occur over several meters in fringing wetlands. Our project goal is to evaluate the use of drone based 3-D digital elevation mapping capabilities across coastal wetland platforms, including creeks and ponds, as well as utilize the spectral, or different types of light, signatures of coastal vegetation as in indicator of species composition and plant stress. The salt marsh observatory at Sage Lot Pond run by WBNERR offers unique opportunities to ground-truth aerial mapping technology. We seek to coordinate with WBNERR’s annual vegetation surveys to optimize application of the drone technology.

Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean

Project Title: Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnology and Oceanography, 61(5), 1916-1931.

Date: 2016

Principal Investigators: Wang, Z. A., Kroeger, K. D., Ganju, N. K., Gonneea, M. E., & Chu, S. N.

Abstract: Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2 parameters across seasons, continuous in situ measurements of biogeochemically‐relevant parameters and water fluxes, with high‐resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). Read Full text:  http://onlinelibrary.wiley.com/doi/10.1002/lno.10347/full

 

Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

Title: Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers.

Date: 4/2016

Authors: Sheremet, V. A., & Mora, J. W. (2016).

Affiliation: NOAA Northeast Fisheries Science Center, Woods Hole MA, United States vsheremet@whoi.edu, Waquoit Bay National Estuarine Research Reserve, Falmouth MA, United States jordan.mora@state.ma.us

Publication: In EGU General Assembly Conference Abstracts (Vol. 18, p. 8794). http://adsabs.harvard.edu/abs/2016EGUGA..18.8794S

Abstract: Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-metric indices

Project Title: Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-metric indices

Date: 2016

Principal Investigator(s): Raposa, K. B., et al. (2016).

Affiliation: Kenneth B. Raposa (a), Kerstin Wasson  (b), Erik Smith (c), Jeffrey A. Crooks (d), Patricia Delgado (e), Sarah H. Fernald (f), Matthew C. Fernerg (g), Alicia Helms (h), Lyndie A. Hice (i), Jordan W. Mora (j), Brandon Puckett (k), Denise Sanger (l), Suzanne Shull (m), Lindsay Spurrier (n), Rachel Stevens (o), Scott Lerberg (p)

a. Narragansett Bay National Estuarine Research Reserve, 55 South Reserve Dr., Prudence Island, RI 02872
b.  Elkhorn Slough National Estuarine Research Reserve, 1700 Elkhorn Road, Watsonville, CA 95076
c. North Inlet-Winyah Bay National Estuarine Research Reserve, PO Box 1630, Georgetown, SC 29442
d. Tijuana River National Estuarine Research Reserve, 301 Caspian Way, Imperial Beach, CA 91932
e. Jug Bay Wetlands Sanctuary, 1361 Wrighton Road, Lothian, MD 20711
f. Hudson River National Estuarine Research Reserve, 256 Norrie Point Way, P.O. Box 315, Staatsburg, NY 12580
g. San Francisco Bay National Estuarine Research Reserve, 3152 Paradise Drive, Tiburon, CA 94920
h. South Slough National Estuarine Research Reserve, P.O. Box 5417, Charleston, OR 97420
i. Delaware National Estuarine Research Reserve, 818 Kitts Hummock Road, Dover, DE 19901
j. Waquoit Bay National Estuarine Research Reserve, 131 Waquoit Hwy, Woods Hole, MA 02536
k. North Carolina National Estuarine Research Reserve, 101 Pivers Island Rd., Beaufort, NC 28516
l. ACE Basin National Estuarine Research Reserve, 217 Fort Johnson Road, Charleston, SC 29412
m. Padilla Bay National Estuarine Research Reserve, 10441 Bayview-Edison Road, Mount Vernon, WA 98273
n. Grand Bay National Estuarine Research Reserve, Mississippi Department of Marine Resources, 6005 Bayou Heron Road, Moss Point, MS 39562
o. Great Bay National Estuarine Research Reserve, 89 Depot Rd, Greenland, NH 03840
p. Chesapeake Bay National Estuarine Research Reserve of Virginia at the Virginia Institute of Marine Sciences, 1375 Greate Road., Gloucester Point, VA 23062

Summary: Biological Conservation, 204, 263-275.

Tidal marshes and the ecosystem services they provide may be at risk from sea-level rise (SLR). Tidal marsh resilience to SLR can vary due to differences in local rates of SLR, geomorphology, sediment availability and other factors. Understanding differences in resilience is critical to inform coastal management and policy, but comparing resilience across marshes is hindered by a lack of simple, effective analysis tools. Read full text… http://www.sciencedirect.com/science/article/pii/S0006320716305742

Carbon dioxide fluxes reflect plant zonation and below ground biomass in a coastal marsh

Project Title: Carbon dioxide fluxes reflect plant zonation and below ground biomass in a coastal marsh

Date: 2016

Principal Investigators: Moseman‐Valtierra, S., Abdul‐Aziz, O. I., Tang, J., Ishtiaq, K. S., Morkeski, K., Mora, J., & Carey, J.

Summary: Coastal wetlands are major global carbon sinks; however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, greenhouse gas (GHG) fluxes were compared among major plant‐defined zones during growing seasons. Carbon dioxide (CO2) and methane (CH4) fluxes were compared in two mensurative experiments during summer months (2012–2014) that included low marsh (Spartina alterniflora), high marsh (Distichlis spicata and Juncus gerardii‐dominated), invasive Phragmites australis zones, and unvegetated ponds. Read Full text…Ecosphere, 7(11). http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1560/full

Direct and indirect trophic effects of predator depletion on basal trophic levels

Project Title: Direct and indirect trophic effects of predator depletion on basal trophic levels

Date: 2016

Principal Investigator(s): Chen, H., Hagerty, S., Crotty, S.M., & Bertness, M.D.

Abstract: Human population growth and development have heavily degraded coastal ecosystems with cascading impacts across multiple trophic levels. Understanding both the direct and indirect trophic effects of human activities is important for coastal conservation. In New England, recreational overfishing has triggered a regional trophic cascade. Predator depletion releases the herbivorous purple marsh crab from consumer control and leads to overgrazing of marsh cordgrass and salt marsh die‐off. Read full text…Ecology, 97(2), 338-346. http://onlinelibrary.wiley.com/doi/10.1890/15-0900.1/full

Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes

Project Title: Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes

Date: 2016

Principal Investigator(s): Brannon, E. Q., Moseman-Valtierra, S. M., Rella, C.W., Martin, R.M., Chen, X. and Tang, J.

Abstract: Precise and rapid analyses of greenhouse gases (GHGs) will advance understanding of the net climatic forcing of coastal marsh ecosystems. We examined the ability of a cavity ring down spectroscopy (CRDS) analyzer (Model G2508, Picarro) to measure carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes in real‐time from coastal marshes through comparisons with a Shimadzu GC‐2014 (GC) in a marsh mesocosm experiment and with a similar laser‐based N2O analyzer (Model N2O/CO, Los Gatos Research) in both mesocosm and field experiments. Read full text… Limnol. Oceanogr. Methods, 14: 466–476. doi:10.1002/lom3.10105. http://onlinelibrary.wiley.com/doi/10.1002/lom3.10105/full

Spartina alterniflora Biomass Allocation and Temperature: Implications for Salt Marsh Persistence with Sea-Level Rise

Project Title: Spartina alterniflora Biomass Allocation and Temperature: Implications for Salt Marsh Persistence with Sea-Level Rise

Date: 2017

Principal Investigator(s): Crosby, S.C., Angermeyer, A., Adler, J.M., Bertness, M. D., Deegan, L.A., Sibinga, N., & Leslie, H.M.

Abstract: To predict the impacts of climate change, a better understanding is needed of the foundation species that build and maintain biogenic ecosystems. Spartina alterniflora Loisel (smooth cordgrass) is the dominant salt marsh-building plant along the US Atlantic coast. Read full text…Estuaries and Coasts, 40(1), 213-223. http://link.springer.com/article/10.1007/s12237-016-0142-9

Indirect human impacts turn off reciprocal feedbacks and decrease ecosystem resilience

Project Title: Indirect human impacts turn off reciprocal feedbacks and decrease ecosystem resilience

Date: 2015

Principal Investigator(s): Bertness, M.D., Brisson, C.P., & Crotty, S.M.

Summary: Creek bank salt marsh die-off is a conservation problem in New England, driven by predator depletion, which releases herbivores from consumer control. Many marshes, however, have begun to recover from die-off. We examined the hypothesis that the loss of the foundation species Spartina alterniflora has decreased facilitator populations, weakening reciprocal positive plant/animal feedbacks, resilience, and slowing recovery. Read full text…Oecologia, 178(1), 231-237. https://link.springer.com/article/10.1007/s00442-014-3166-5

Thin-layer sediment placement: evaluating an adaptation strategy to enhance coastal marsh resilience across the NERRS

Boardwalk_Research Staff 2018
Project Title: Thin-layer sediment placement: evaluating an adaptation strategy to enhance coastal marsh resilience across the NERRS

Lead Investigator: Dr. Kenny Raposa, Research Coordinator, Narragansett Bay National Estuarine Reserve

WBNERR Project Contact: Dr. Megan Tyrrell

8 Reserves Included in Project: Great Bay NH, Waquoit Bay MA, Narragansett Bay RI, Chesapeake Bay MD, Chesapeake Bay VA, North Carolina, Grand Bay MS, Elkhorn Slough CA

Summary: Tidal marshes provide key ecosystem services, but are threatened by sea level rise. Narragansett Bay and Elkhorn Slough NERRs recently led a project to assess marsh resilience to sea level rise across 16 NERR sites, resulting in a scientific publication, user-friendly summary, and DIY tool. Currently, eight NERR sites across the East, Gulf and West coasts are actively testing strategies to examine the effectiveness of thin-layer sediment placement as a climate adaptation strategy.

Novel aspects of our project include the broad geographic scale, the examination of effectiveness at different marsh elevations, standardized monitoring, and the incorporation of biochar as a soil amendment to enhance carbon sequestration. Beneficial use of dredged sediment to enhance coastal resilience is a concept that resonates in many coastal states, and we have interviewed end-users from eight states interested in funding, permitting, implementation or monitoring of thin-layer sediment projects.

Tea bag decomposition experiment

Principal Investigators: Dr. Faming Wang, Dr. Jianwu (Jim) Tang, Marine Biological Laboratory

teabagWe use commercially available tea bags as standardized test kits to gather data on salt marsh decomposition rates. This is a cost-effective, well-standardised method. By using two tea types with contrasting decomposability, we can construct a decomposition curve using a single measurement in time. We will compare the decomposition rate within the high marsh and low marsh, and also in the warmed chamber versus ambient reference. Our data was also included in a worldwide cooperation network to investigate the decomposition rate in different ecosystems using the tea bag method.

To read more about the tea bag experiment and its relationship to blue carbon research, please visit:

http://bluecarbonlab.org/ and also http://www.teatime4science.org/about/the-project/

Relationship of phenotypic variation and genetic admixture in the Saltmarsh-Nelson’s sparrow hybrid zone

Project Title: Relationship of phenotypic variation and genetic admixture in the Saltmarsh-Nelson’s sparrow hybrid zone

Date: 2015

Principal Investigator(s): Walsh, Jennifer, et al.

Abstract: Hybridization is influential in shaping species’ dynamics and has many evolutionary and conservation implications. Identification of hybrid individuals typically relies on morphological data, but the assumption that hybrids express intermediate traits is not always valid, because of complex patterns of introgression and selection. Read full text…The Auk 132.3: 704-716. https://academic.oup.com/auk/article/132/3/704/5149087

The Great Sippewissett salt marsh plots—some history, highlights, and contrails from a long-term study

Project Title: The Great Sippewissett salt marsh plots—some history, highlights, and contrails from a long-term study

Date: 2015

Principal Investigator(s): Valiela, I.

Summary: During the 2013 meeting of the Coastal and Estuarine Research Federation, Iris Anderson, acting on behalf of the CERF Board, invited me to write an Odum Essay, describing the long stretch of work done in the Great Sippewissett Marsh in Cape Cod, MA, reviewing findings, and recalling how the sequence of results moved the efforts forward across over 40-plus years. Read full text…Estuaries and Coasts, 38(4), 1099-1120. https://link.springer.com/article/10.1007/s12237-015-9976-9

Experimental mapping of coastal habitats using small airborne remote-sensing technology

Project Title: Experimental mapping of coastal habitats using small airborne remote-sensing technology

Principal Investigators: Hanu Singh, WHOI, David Fisichella, WHOI, Jim Rassman, WBNERR

Summary: WHOI scientists are working with Reserve staff, using a small hobby-plane equipped with GPS and camera to take high-resolution photos of the salt marsh and shore at South Cape Beach. These photos are useful for public presentations, but more importantly can map change over time, damage from storms, results of controlled burns, animal populations (such as seals), etc. TOTE 2012- jcm 005

Comparing Methods and the Stability of Deep-Driven Rod Elevation Benchmarks and SETs in a Salt Marsh Environment

IMG_2761PIs: Philippe Hensel, National Geodetic Survey
Galen Scott, National Geodetic Survey, University of RI
Jim Lynch, US Geological Survey
WBNERR Staff: Jim Rassman, Jordan Mora, Chris Weidman

Description: Sediment Elevation Tables (SETs) and benchmarks are used to measure change in marsh elevation with millimeter scale accuracy to determine sedimentation rates. This information, combined with accurate water level measures, can assess whether salt marshes are keeping up with sea level rise or risk being “drowned.” Traditionally SETs and benchmarks are installed by driving metal rods deep into the earth until they hit resistance. This can be difficult and costly as each 4’ length of rod is expensive. This project is investigating whether it is necessary to drive the rods that deep, or whether they are just as stable at, say, 20’ depth. Rods have been driven to different depths in the South Cape Beach salt marsh and are being “leveled” regularly – measured against a known point – to see if they have shifted. If not, this research could result in new standards for installation of this infrastructure which would save significant time and money. This is one of a growing number of projects in the new “Climate Change Observatory” in this marsh.

 

Late Holocene Marine Transgression and the Drowning of a Coastal Forest: Lessons from the Past

Chris Maio

PI: Chris Maio, UMASS-Boston, PhD Candidate.

Advisor: Allan Gontz, UMASS-Boston

Funding: UMASS-Boston, Geological Society of America Research Award, collaborative in-kind-WBNERR

My research looks at coastal changes that have occurred in response to sea-level rise and storminess during the past 4000 years. I use a variety of methods including sediment core analysis, ground penetrating radar, GIS, and radiocarbon dating. Learning about how the Waquoit estuarine system responded to past sea level-rise and storminess will provide needed context for understanding and anticipating future changes.
An ancient red cedar forest was first revealed after a series of storms in 2010 resulted in significant erosion along South Cape Beach revealing 111 subfossil stumps along the beach and into the water. Thirteen stumps were radiocarbon dated and ranged in age from ~413-1200 years old. We assume this age represents the time at which the ancient trees were drowned by marine waters. Shoreline change analysis showed that between 1846 and 2008, the shoreline fronting the paleoforest retreated landward by 70 m at a long-term rate of 0.43 m/yr. paleo forest2
Sediment cores were analyzed to determine storm and sea level history. Radiocarbon dates of bivalve microfossils indicate that Waquoit Bay was first inundated by marine waters approximately 3600 years ago. The ongoing research will help decipher the relationship between sea-level rise, storminess, and the inundation of terrestrial ecosystems and will help to illuminate what caused the drowning of the South Cape Beach paleoforest.

Salt Marsh Productivity and Consumer Control in a Changing Climate

Corman_cmprsdPI: Sarah Corman, Brown University, PhD Candidate.
Funding: NERRS Graduate Research Fellowship at WBNERR (current)

“The goal of my research at WBNERR is to investigate how Spartina alterniflora, the foundation species of salt marshes, will respond to rising temperatures, and to what extent salt marshes can resist drowning under predicted rates of sea level rise. Aboveground growth, in stems and leaves, and belowground growth, in roots and rhizomes, work in concert to maintain elevation and resist marsh drowning, and yet we don’t understand the patterns and processes driving the relationship of above to belowground growth. I am also exploring how the timing of flowering in Spartina influences elevation change and seed production. Understanding these mechanisms in salt marshes is critical to predicting potential loss of these ecosystems in the future.”   http://sarahcorman.wordpress.com/

The Impact of Nitrogen-loading on Salt Marsh Greenhouse Gas Fluxes

DSC_0125PIs:  Serena Moseman-Valtierra, University of Rhode Island, Jianwu Tang, MBL Ecosystems Center, Kevin Kroeger, USGS-Woods Hole Science Center,
Funding: MIT Seagrant
The general goal for the project is to measure potential greenhouse gas (GHG) emissions and net CO2 uptake in coastal wetlands under a range of realistic nitrogen (N) loads and inundation (sea) levels. By meeting this goal, we aim to improve the information with which managers and policy makers can maintain and maximize ecosystem productivity, reduce harmful feedbacks of climate, and assess the potential for these ecosystems to enter C markets.

We will examine how GHG emissions from salt marshes vary along an existing gradient of anthropogenic N loading in Waquoit Bay, MA (WB-NERR). Further, we will test for relationships between N loads to the marshes and plant productivity. To investigate the influence of anticipated future increases in sea level, we will use existing gradients in marsh soil elevation (and therefore a gradient in soil water saturation and in frequency and duration of soil inundation) as a space-for-time substitution simulating future inundation of soils.

Carbon Management in Coastal Wetlands: Quantifying Carbon Storage and Greenhouse Gas Emissions by Tidal Wetlands to Support Development of a Greenhouse Gas Protocol and Economic Assessment

Project Title: Carbon Management in Coastal Wetlands: Quantifying Carbon Storage and Greenhouse Gas Emissions by Tidal Wetlands to Support Development of a Greenhouse Gas Protocol and Economic Assessment

Project Lead: Alison Leschen, Waquoit Bay Reserve Manager

Collaborative Lead: Tonna-Marie Rogers, Waquoit Bay Coastal Training Program Coordinator

Principal Investigator(s): Jianwu Tang, MBL Ecosystems Center, Kevin Kroeger, USGS-Woods Hole Science Center, Neil K. Ganju, USGS-Woods Hole Science Center, Serena Moseman-Valtierra, University of RI, Omar Abdul-Aziz, Florida International Univ., Stephen Emmett-Mattox, Restore America’s Estuaries, Igino Emmer, Silvestrum, Stephen Crooks, Consultant to RAE, Pat Megonigal, Smithsonian ERC, Thomas Walker, Manomet CCS, Chris Weidman, Waquoit Bay Reserve Research Coordinator,

Funding: NERRS Science Collaborative

Summary: Increasing atmospheric concentrations of three major greenhouse gases (GHG) are the main drivers of climate change. Efforts to ameliorate rising levels of GHG include the protection and restoration of ecosystems that constitute major carbon (C) sinks and minor sources of CH4 and N2O emissions. Tidal marshes are prime candidates for such efforts as their sediments display  high C sequestration. Loss of wetlands through human impacts such as land conversion, sediment supply disruption, nutrient loading, and with sea level rise, reduces future sequestration capacity and places at risk stores of C that built up over past centuries. Improved management of coastal C and nitrogen (N), based upon sound science, is a critical first step towards mitigation of climate change and management of coastal ecosystems. Management must address N loading that has the dual impact of 1) contributing to climate change through production of N2O, and 2) reducing production of root and soil matter by plants which can decrease the C sequestration capacity and resilience of marshes to sea level rise. Recognition of the importance of coastal marine systems in terms of C storage has led to national and international efforts to place monetary value on preserving or restoring the “blue carbon” in those systems, analogous to the value placed on forests. The barrier to incorporation of tidal wetlands into C markets is the absence of agreed upon GHG offset protocols that set guidelines for monitoring and verification requirements for wetlands projects, and a lack of data and knowledge regarding C and GHG fluxes in wetlands to support model development.

The project goals are to provide scientific information that can inform both C and N management as well as wetlands protection and restoration strategies for supporting development of policy frameworks and market-based mechanisms to reduce GHG.

Project website: http://waquoitbayreserve.org/research-monitoring/salt-marsh-carbon-project/

Weather Data

Water Quality Data

Tides & Currents

Donate