

Building a Salt Marsh Greenhouse Gas Budget: Lateral Fluxes

Kevin D. Kroeger

USGS Woods Hole Coastal & Marine Science Center

Acknowledgements

- Collaborators: Neil K. Ganju, John W. Pohlman, Zhaohui Aleck Wang, Meagan Gonneea, Amanda C. Spivak, Adrian Green, Sandra Baldwin, T. Wallace Brooks, Michael Casso, Serena Moseman-Valtierra, Jianwu Tang, Jordan Mora, Christopher Weidman, Kate Morkeski, Linda Kraemer, Thomas Kraemer, Emile Bergeron, Charles Worley, Elizabeth Brannon, Julia Signell, Alterra Sanchez
- Funding Sources:
 - NOAA Science Collaborative
 - USGS Coastal & Marine Geology Program
 - USGS LandCarbon Program
 - NOAA WHOI Sea Grant

photo: S. Baldwin

Lateral Fluxes = Tidal Exchanges of Carbon and Gases

Published Rates of DOC Export on U.S. East Coast

Rate of C storage in soil

(Chmura et al. 2003, Loomis & Craft 2010, Duarte et al. 2005)

Experimental Design Strategy: Small, known basins and intensive collections during individual tidal cycles

Drainage Basin Based on 1 m Resolution LiDAR: 4,132 m²

Station Set-up At Creek Mouth

Sample collections in cold weather...

...in beautiful weather...

...and after dark.

Example of full tidal cycle with greenhouse gas measurements

Subtle Features of Sub-Tidal Cycle Flux Rates

Interpretations and Comments on Methods

- Reduced salinity (groundwater-influenced) porewater seems to be the major source for high CH₄ concentrations at low tide.
- Wetland porewater seems to be the major source for CO₂.
- High sensitivity of flux calculations to small differences in concentration at times of major water flux is a critical feature and limitation: Insufficient frequency of measurements or insufficient accuracy could contribute to the lack of consensus in the literature about the role of coastal wetlands as exporters or importers of carbon.
- Continuous data appears to be necessary, given the high degree of variability on daily timescales and sensitivity of calculations to small differences in concentration between flood and ebb tide.

Strategy for high frequency measurements over extended time

Water flux: Liters per second

Concentration: grams per liter

Measuring: Forms of carbon, nitrogen and greenhouse gases

Total flux: Liters/Second x Grams/Liter = Grams per second

Instruments deployed: Chemistry, Flow & Proxies for C Species

science for a changing world

Sensor data as context for results of discrete sample analyses

Sensor data as context for results of discrete sample analyses

Sensor data to quantify groundwater contribution: 17 m³/d

Sensor data as a C proxy: Multiple regression for DOC

DOC (μM) = 464.04 – 63.608*pH + 7.639*Temp + 2.576*FDOM + 4.006*Sal

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	464.04427	124.2623	3.73	0.0004*
pH	-63.60782	14.67363	-4.33	<.0001*
Temp_C	7.638949	0.705161	10.83	<.0001*
FDOM_QSU	2.5764453	0.370786	6.95	<.0001*
Sal_ppt	4.0055984	0.907849	4.41	<.0001*
Effect Tes	ts			
		Diet		
Kesiduai L	y Predicted	PIOL		
100-			1	
g -		2		
esidu		* Y		
A Residua		, r.,		
uM Residue	•			
OC_uM Residua				
DOC_uM Residual				
DOC_uM Residua				
1,,	150 200 30	00 350 45	50	

science for a changing world

Extended sensor deployments thus allow high frequency flux calculations

Correction to water flow for sheetflow outside of creek

Application of COAWST (J. Warner) and ROMS models showed that a greater fraction of total water flow occurred outside of the creek during flood tide than during ebb tide.

Correction reduced estimate of net export of DOC by ~30%.

Seasonal Patterns in Carbon Flux

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Carbon Fate: Annual Fluxes & Comparison to Literature

Tidal Exchange:

- 1. Primary fate for carbon removed from the atmosphere and contributes to accretion through sediment supply
- 2. A new method to quantify a critical term in wetland C budgets
- 3. Isotopes and other tracers aid identification of C source

Comparison of Carbon Pools: Dissolved inorganic > Dissolved organic >> Particulate

