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Climate Change

Climate Change — any systematic change in the long-term statistics
of climate elements (e.g. temperature, pressure) sustained over
several decades or longer

(American Meteorological Society)




Climate Change: the last 450,000 years of glacial cycles

Ice Age Temperature Changes
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EPICA, Nature 2004; Petit et al., Nature, 1999; Overpeck et al., Science, 2006




Zooming in on the last 2000 years

Reconstructed Temperature
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Jones et al., The Holocene, 1998; Mann et al. GRL, 1999; Crowley et al., Science,
2000; Mann and Jones, GRL, 2003; Jones and Moberg, J. Climate, 2003.




Modern Climate Change: what is driving the warming?

Global Average Temperature
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Hansen et al. 2010; Morice 2012; Vose 2012




Drivers of Climate Variability

[l

Not active over the short timescales in question




Drivers of Climate Variability

0 Motion of Continents — millions of years

Sun variability (sun spots)




Glacial cycles largely driven by changes in the Earth’s Orbit

200 400 600 800 1000 kyr ago YES - changes in the Earth’s
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Hays et al. Science, 1976; Quinn et al., Astron. Jour., 1991; Lisiecki and Raymo, Paleocean. 2005




Drivers of Climate Variability

0 Motion of Continents — millions of years

earth/sun distance =2 glacial cycles, active over

tens of thousands of years or longer




Climate variability forced by variations in the sun

Maunder Minimum >

400 Years of Sunspot Observations Little Ice Age

Modern

Hoyt & Schatten (1998a, 1998b). Minmum |
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Willson et al., GRL, 2003
DeWitte et al., Solar Physics, 2004
Forhlick and Lean (2004), Astr. Astrophys Rev.
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Drivers of Climate Variability

0 Motion of Continents — millions of years

7 Solar Radiation
) earth/sun distance =2 > 10,000 years

i) Sun variability (sun spots) 2 some influence but

unlikely to be driving the change since 1970s




s it internal variability ¢

Reconstructed Temperature
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Drivers of Climate Variability

0 Motion of Continents — millions of years

0 Solar Radiation

) earth/sun distance

i) Sun variability (sun spots)
0 Internal Variability
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Greenhouse Gases = Heat Trapping Gases

The Greenhouse Effect

Some of the infrared
radiation passes through
the atmosphere but most

is absorbed and re-emitted
in all directions

by greenhouse gas
molecules and clouds.
The effect of this is to

Some solar radiation warm the Earth’s surface
is reflected by and the lower atmosphere.
the Earth and the
atmosphere.

Solar radiation powers
the climate system.

About half the solar radiation
is absorbed by the

Earth’s surface and warms it. Infrared radiation is
emitted from the Earth’s

surface.

NCA, 2013; IPCC 2007




Greenhouse Effect in other planets

Mercury
Venus
Earth
Mars

(modified from A. Dessler, “Introduction to modern climate change”)




Consistent changes in temperatures and carbon dioxide

Ice Age Temperature Changes
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Jones and Mann 2004; Oerlemans 2005; modern black from Hadley Center




Is the variability forced by Greenhouse Gases?
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3) CLIMATE MODELS

Carbon Dioxide Concentration
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CLIMATE MODELS
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Climate Models

Global and Continental Temperature Change

Model runs without
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Climate Change in the Oceans

1.Ocean Warming

2.0Ocean Acidification

3.Sea Level Rise

4. Storm Surge and Waves from Extreme Events




Climate Change in the Oceans — Ocean Warming

ERSST linear trend SST anomalies

Top 2000’ of the
global oceans have
warmed since the

1970s
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Chavez et al. 2011; NCA 2013




Impact of Climate Change in the Northeast Oceans
Fisheries Shifting North
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(Nye et al. 2009; Collie 2008)
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Poleward migration of species
Griffis and Howard, 2012
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Fate of Manmade CO, Emissions (2000-10)

Atmosphere
47%

Land

~10 billion tons >
carbon per year

26% | i | i

LeQuere et al. Nature Geosciences 2009; Global Carbon Project 2011




41 —e—Sea pCO, based on DIC and TA

—e—Wet air pCO, based on : V.. Ocean ACidification

MLO data
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Doney et al. Ann. Rev.
Mar. Sci. 2009
Dore et al. PNAS 2009




Negative Impacts of CO, on Mollusks

Ambient CO, (Vineyard Sound) High CO, (estuaries, future)

10 microns

Eastern Oyster Larvae Anne Cohen & Dan McCorkle
WHOI (2012)
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Ocean Acidification Fa w

-Reduced shell formation
-Habitat loss
-Less available prey




Impact of Extreme Events coupled with sea level rise

Measured Surge - Woods Hole

1954
(Carol)

1960 (Donna) 1991 (Bob)




SLOSH Simulation of Hurricane Bob
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Woods Hole flood map (1% annual flood)
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Projections in the Northeast

Business as usual 4-10 F increase in air temp. by

2080

Reduced emissions 3-6 F increase in air temp by

2080

Frequency and intensity of cold-air outbreaks is
projected to decrease

Increased winter precipitation, increased summer
drought — large uncertainties




CLIMATE RESOURCES

0 National Climate Assessment Report

(US Global Change Program, www.globalchange.gov)

1 Intergovernmental Panel on Climate Change (IPCC)

Last report in 2007, new report due in 2013/2014

(www.ipcc.ch)




Climate Change is happening, but what can we do?

Adaptation, especially in sensitive areas, should be
recognized early

Consumer support of green energy initiatives

Communicate priorities with all levels of
government; climate change affects everyone!

Support research into mitigating impacts, furthering
understanding, and finding solutions
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Human-driven increase in Greenhouse Gases Emissions

Carbon Emissions
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Boden et al. 2010




Climate Models

Climate Change Different forcings are specified in
Attribution advance (not picked to obtain best

match)

Grey bands indicate natural variability
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Meehl, G.A., W.M. Washington, C.A. Ammann, J.M. Arblaster, TM.L. Wigleym and C. Tebaldi (2004).

"Combinations of Natural and Anthropogenic Forcings in Twentieth-Century Climate". Journal of Climate

17: 3721-3727.




The Holocene: A mostly stable climate after the last Glaciation

Holocene Temperature Variations

End of Last
Glacial
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Jones and Mann, Rev. Geophys., 2004; Huang, GRL, 2004; Moberg et al., Nature 2003; Jones
and Moberg, J. Climate, 2003
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Rising Atmospheric Carbon Dioxide

Heat-Trapping Gas Passes Milestone, Raising Fears

PARTS PER MILLION

Ehe New Aork Cimes
May 10t, 2013




Impact of Extreme Events coupled with sea level rise
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Modeled Hurricane Bob
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Historical Hurricane Strikes NE
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