

Capitalizing on Coastal Blue Carbon

The Conference Center at Massasoit Community College | May 12-13, 2015

Overview of the Carbon Methodology and Guidance Document

Steve Emmett-Mattox, RAE Dr. Steve Crooks, ESA

Enabling Blue Carbon Finance - Review

VCS Standard and WRC Requirements

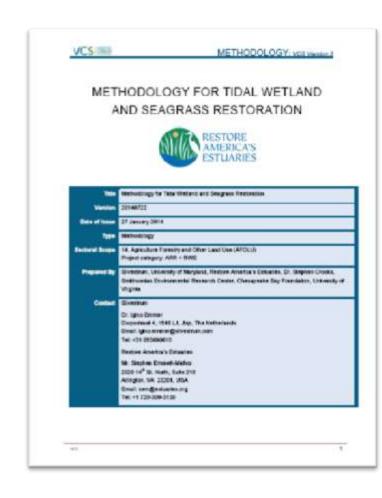
Methodology Development

> Project Development

GHG Emission Reductions and Removals, and Offsets

Blue Carbon Finance Considerations

Motives are two-fold:


- Developer wishes to achieve real, additional and measurable GHG emission reductions or removals (in support of any other overall purpose, ecologic, social or other)
- 2. Developer wishes to tap into additional funding.

Optimizing the carbon finance component should inform the project from the start.

Tidal Wetland and Seagrass Restoration Methodology

Goals

- Carbon finance for restoration
- Ecologically appropriate
- Scientifically credible
- Meet requirements of stringent
 GHG standards
- Broadly applicable to restoration
- Flexible in its use
- Practicable

Tidal Wetland and Seagrass Restoration Methodology

- Submitted to Verified Carbon Standard December 2013
- Draft available at www.v-c-s.org, search "wetland"
- First validation completed Dec 2014
- Second validation and VCS approval expected late 2015

Authors

- Dr. Igino Emmer, Silvestrum
- Dr. Brian Needelman, University of Maryland
- Steve Emmett-Mattox, RAE
- Dr. Stephen Crooks, ESA
- Dr. Pat Megonigal, Smithsonian Env. Research Center
- Doug Myers, Chesapeake Bay Foundation
- Matthew Oreska, University of Virginia
- Dr. Karen McGlathery, University of Virginia
- David Shoch, Terracarbon

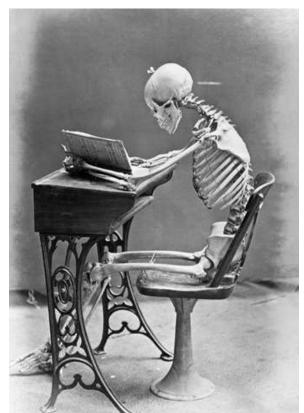
Methodology – Table of Contents Highlights

- 3 DEFINITIONS
- 4 APPLICABILITY CONDITIONS
- **5 PROJECT BOUNDARY**
 - 5.1 Temporal Boundaries
 - 5.2 Geographic Boundaries, e.g. stratification, sea level rise, and buffer zones
 - 5.3 Carbon Pools
 - 5.4 Sources of Greenhouse Gases

6 BASELINE SCENARIO

- 6.1 Determination of the Most Plausible Baseline Scenario
- 6.2 Reassessment of the Baseline Scenario

7 ADDITIONALITY


- 7.1 Tidal wetlands and seagrass meadows in the United States
- 7.2 Projects outside the United States

8 QUANTIFICATION OF GHG EMISSION REDUCTIONS AND REMOVALS

- 8.1 Baseline Emissions
- 8.2 Project Emissions
- 8.3 Leakage, activity-shifting and market
- 8.4 Net GHG Emission Reduction and Removals

9 MONITORING

Tidal Wetland and Seagrass Restoration Methodology

Habitats – all tidal wetlands and seagrasses, globally

- Marshes, all salinity ranges
- Mangroves
- Seagrasses
- Forested tidal wetlands

Eligible Activities

Restoration via enhancing, creating and/or managing hydrological conditions, sediment supply, salinity characteristics, water quality and/or native plant communities

Methodology - Eligible Activities

- Removing tidal barriers
- Improving hydrological connectivity
- Restoring tidal flow to wetlands
- Lowering water levels on impounded wetlands
- Beneficial use of dredge material
- Diverting river sediments to sediment-starved areas
- Restoring tidal flow to tidally-restricted areas
- Reducing nutrient loads improved water clarity to expand seagrass meadows
- Recovering tidal and other hydrologic flushing and exchange
- Reducing nutrient residence time
- Re-seeding or replanting of native plant communities

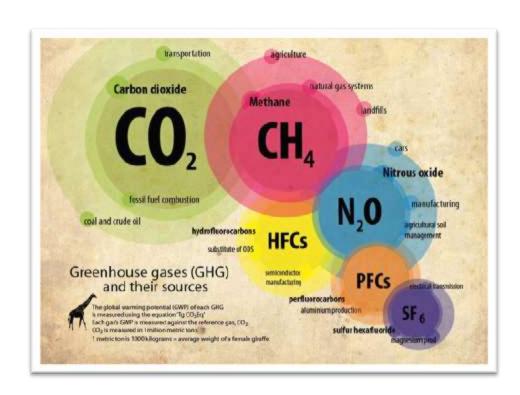
Applicability Conditions

- No leakage (activity shifting or market)
- Lowering of the water table limited to:
 - Open water conversion
 - Maintain wetland conditions
- No Nitrogen fertilizers

Applicability Conditions

Additionality

- Regulatory compliance test
- Standardized approach: In U.S., all new, voluntary tidal wetland and seagrass restoration is additional
- Non-U.S. projects must follow project tool



Methodology Overview

Greenhouse Gases

- CO₂
 - Biomass
 - Soils
 - Fuel emissions
- Methane
- Nitrous Oxide

In baseline and with-project scenarios

Greenhouse Gas Accounting

- Published data
- Default values
- Emission factors
- Field-collected data
- Proxies
- Models

FLEXIBILITY

 Where science is insufficient, burden on project developers to demonstrate rigor of approach

Greenhouse Gas Accounting

Default Values

- 1.46 Mg C per ha per year for non-seagrass
- IPCC values for seagrasses and other land uses

Guidance Document - Table of Contents

Preamble

Key Messages		11
l.	Introduction: Blue Carbon and Blue Carbon Finance	13
II.	Background: Carbon Asset Generation in the Land-Use and Coastal	
	Wetland Sectors	19
III.	Wetlands Restoration and Conservation under the VCS: Key Eligibility	
	Considerations	26
IV.	First Project Steps: Feasibility Assessment, Site Selection and	
	Prioritization	37
V.	Using the Tidal Wetland and Seagrass Restoration Methodology	49
VI.	Registration, Institutions and Stakeholders	93
VII.	Carbon Markets and Carbon Asset Management	98
VIII.	Grouped Projects: Applicability and Recommendations	102
IX.	Bibliography	109

Methodology Guidance

- Appropriate project
- Applicability conditions
- Project boundaries
 - Geographical and temporal
- Overview of relevant GHGs
 - Baseline and with project accounting
 - General information on accounting methods
 - Soil CO2 oxidation in the baseline scenario
 - Soil CO2 sequestration in the with-project scenario
 - Autochthonous v allochthonous carbon
 - Methane accounting
 - Nitrous oxide accounting.
 - Natural and prescribed fire
- Leakage
- Monitoring
 - Soil carbon
 - Methane and nitrous oxide
 - Sample size requirements

