

#### Capitalizing on Coastal Blue Carbon

The Conference Center at Massasoit Community College | May 12-13, 2015







A User-Friendly Model for Predicting Greenhouse Gas Fluxes and Carbon Sequestration in Tidal Wetlands

Omar Abdul-Aziz, Ph.D., Assistant Professor

Khandker Ishtiaq, Doctoral Candidate, Civil & Environmental Engineering Florida International University, Miami

## **Background**

- Tidal wetlands play an important role in soil-atmospheric exchanges of the greenhouse gases (GHGs) of carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), and nitrous oxide (N<sub>2</sub>O).
- A delicate balance in climate, land uses (nutrient sources), hydrology and other ecological drivers determine the role of wetlands as the net source or sink of GHGs.
- A user-friendly model is needed to predict the GHG fluxes and carbon (C) storage from tidal wetlands.
- The model can facilitate appropriate management of C stocks in tidal wetlands and their incorporation into the C market.



#### The BWM Wetland Carbon and GHG Model

- The BWM wetland C and GHG model is a non-linear empirical model developed by fitting data for four different wetlands of Waquoit Bay, MA representing biogeochemical gradients.
- The model takes soil temperature, soil salinity, water depth relative to marsh surface, and light as inputs to predict the corresponding CO<sub>2</sub> and CH<sub>4</sub> fluxes.
- The model estimates the potential wetland carbon storage by upscaling the instantaneous predicted fluxes to the growing season and subtracting the corresponding net lateral flux with the bay.
- The model is presented in a simple macro enabled Excel spreadsheet file as a user-friendly engineering tool for coastal carbon management without requiring much input data.



## **How Can the Model Help?**



The model will act as an ecological engineering tool to aid tidal wetland restoration and maintenance projects



The model will reduce the cost of wetland C and GHG flux monitoring by estimating them from climatic and environmental drivers



The model can predict wetland GHG fluxes and C sequestration under various IPCC climate change and sea level rise scenarios



#### **Beneficiaries and Users**





## **Model Assumptions**

- ➤ Coastal salt marshes are productive mainly during the extended growing season (e.g., May to October).
- $ightharpoonup CH_4$  fluxes from tidal wetlands mainly represent  $CH_4$  emissions to the atmosphere.
- ➤ Model is spatially explicit for the tidal salt marshes of Cape Cod area. However, the current model can be extended for similar wetlands of the New England region.
- The net ecosystem carbon balance (NECB) represents the potential C storage in wetlands. NECB =  $CO_2$  sequestration flux-  $CO_2$  and  $CH_4$  emission flux lateral C flux.
- ➤ If lateral flux data are not available, user can assume zero (0) for the net lateral C flux between the wetland and estuary/bay.



#### **Model Structure and Work-Flow**

Predicted instantaneous

wetland CO<sub>2</sub> and CH<sub>4</sub>

fluxes

#### Soil temperature (ST), soil **Model Inputs** salinity (SS), water depth (WD), and light (PAR) Water depth Photosynthetically relative to the Soil salinity Soil active radiation marsh (SS, units: **Model** temperature (PAR, units: elevation parts per (ST, units: °C) mircomole/m<sup>2</sup>/s) (WD, units: thousand) m). Wetland CO<sub>2</sub> and CH<sub>4</sub> fluxes **Model Outputs** Net Ecosystem Carbon Balance (NECB)

Net CO<sub>2</sub> and CH<sub>4</sub>

fluxes over the

growing period

Net Ecosystem Carbon

Balance (NECB) in

units of gC/m2 and

metricton C/hectare

## **Brief Input Data Guide**

Enable macros in your Microsoft Excel file (Excel options>trust center> trust center settings> macro setting)

At least 2 sets of input measurement are required (Day time averages and night time averages)

Recommendation is to use 6 sets of observations to incorporate seasonal variation.

| Input<br>set | Description                                                                                                            |
|--------------|------------------------------------------------------------------------------------------------------------------------|
| 1, 2         | Daytime and<br>nighttime average of<br>the input variables at<br>the beginning of the<br>growing period (May-<br>June) |
| 3, 4         | Daytime and<br>nighttime averages at<br>the peak of the<br>growing period (July-<br>August)                            |
| 5,6          | Daytime and<br>nighttime average at<br>the end of the growing<br>period (September-<br>October)                        |



## **Input Measuring Devices**



PAR (Light): Photosynthetically active radiation (PAR) represents the fraction of sunlight with a spectral range from 400 to 700 nm, usually expressed in μmol (photons) m<sup>-2</sup> s<sup>-1</sup> Measured by using Quantum sensors



**Soil Salinity** is the salt content in the soil sediment.

Often measured by using Electrical Conductivity meter



## **Input Measuring Devices**



**Soil Temperature** 

**Measured by using Digital Thermometers** 



Water Level measuring device to calculate water depth

Measured by using automatic gauge attached with a sensor



### **Excel Model Interface**

## **Excel Model Interface**



## **Example Using Two Sets of Inputs**

#### Set 1: Daytime (PAR>300 umole/m<sup>2</sup>/s)

Average Soil Temperature, ST = 20.43 °C

Soil Salinity, SS = 29.58 ppt

Light, PAR = 1454.29 micromole/m<sup>2</sup>/s

Water depth, WD = 0.07 m

#### Set 2: Nighttime (PAR<300 umole/m<sup>2</sup>/s)

Average Soil Temperature, ST =17.92 °C

Soil Salinity, SS = 30.67 ppt

Light, PAR = 32.52 micromole/m<sup>2</sup>/s

Water depth, WD = 0.067 m

#### Click RUN

#### **Outputs**

(assuming an extended growing period from May to October and "zero" net lateral flux)

Net  $CO_2$  sequestration = 514.54 gC/m<sup>2</sup>

Net  $CH_4$  emission = 0.16 gC/m<sup>2</sup>

Net Ecosystem Carbon Balance =  $514.38 \text{ gC/m}^2$  or 5.14 metric ton C/hectare



## **Application: Scenario Analysis**

#### Scenario

- (A).1% increase in daytime temperature (ST)
- (B). 3% increase in nighttime ST
- (C).0.05m increase in mean water depth (RD) due to sea level rise
- (D). 2% increase in salinity (SS).

## Results

NECB will be 494.18 gC/m2 or 4.94 metric ton C/hectare

## Interpretation

The assumed temperature and sea level rise will reduce 20.2 gC/m<sup>2</sup> or 0.20 metric tonC/hectare from the wetland relative to its baseline C storage.



## **Next Step: Model Generalization**

- Model generalization will increase model space (e.g., New England) and time (annual and inter-annual scales) domain.
- The model needs to be tested (i.e., validated) by collecting and gathering more data for GHG and lateral fluxes, and for climatic, environmental and ecological drivers.
- The validation data sets should incorporate seasonal and inter-annual variation, and include different wetland regimes.
- Model generalization and robustness is the subject of our working proposal, BWM Phase 2 (to be submitted to NOAA-NERRS on May 18, 2015)



## **Contact the Developers**

• For any query about the model, methodology and Excel spreadsheet, please contact the following persons:

- 1. Dr. Omar I. Abdul-Aziz (email: <u>oabdulaz@fiu.edu</u>; <u>omariaaziz@gmail.com</u>)
- 2. Khandker S. Ishtiaq (email: <u>kisht001@fiu.edu</u>)







## **Background**

- Modeling and prediction of wetland GHGs (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O) has been an extremely challenging undertaking.
- Available models are mostly mechanistic, often failing to provide spatiotemporally robust predictions.
- We proposed a systematic data-analytics approach to
  - achieve mechanistic insights and determine the relative linkages of wetland GHG fluxes with different climatic, hydrologic, biogeochemical and ecological drivers;
  - classify and group process variables based on their similarity and interrelation patterns;
  - develop parsimonious empirical models to predict wetland
     GHGs by leveraging the mechanistic insights.



## The Data-Analytics Approach

Ishtiaq and Abdul-Aziz (2015), Environmental Management.



# Case Study Area: Field campaign 2012-2013 (Salt Marshes, Waquoit Bay NERR, MA)





### Collected Data Set (2012-2013)

### **Low and High Marshes**

CO2, CH4 and N2O fluxes

Air Temperature (AT)

Sediment Temperature (ST)

Photosynthetically Active Radiation (PAR)

Sediment Moisture (SM)

Water Level (WL); converted to relative water depth (WD)

Sediment Salinity (SS)

pН

NO3<sup>-</sup> and NH4<sup>+</sup> (2013 only)



## Analysis Criteria Based on Water Depth

• Soil water level can play an important role in wetland CO<sub>2</sub> and CH<sub>4</sub> exchanges since it controls aerobic-anaerobic condition driven biogeochemical activities.



Relative linkages and modeling

Classification Criterion

Water above marsh (WD>0)

Flux

Water below march (WD<0)

PAR.

AT, ST,

SM, SS,

рН



## CO<sub>2</sub> Sequestration



■ Relative Water Depth (WD) was not a strong predictor of net sequestrated CO<sub>2</sub> fluxes.

Therefore, the final predictive model combines data from both WD>0 and WD<0 conditions for model parsimony.



## CH<sub>4</sub> Emission

For both WD>0 and WD<0



■ Relative Water Depth
(WD) was a strong
predictor of CH<sub>4</sub> emission
for both WD>0 and WD<0
condition.

☐ Therefore, predictive models were developed for the two cases separately.



## **Up-scaling to Estimate Net Ecosystem Carbon Balance**

- Instantaneous predicted Net CO<sub>2</sub> sequestration and CH<sub>4</sub> emission fluxes were up-scaled over the growing period of 2013 (June to October, 153 days) to calculate **net ecosystem carbon balance** (**NECB**) for Waquoit Bay area.
- NECB = Net CO<sub>2</sub> Sequestration-Net CH<sub>4</sub> Emission Net Lateral C Flux
- Predicted instantaneous C fluxes are in **micromole C/m2** over the growing season. It is then converted to **g C/m2** to estimate NECB.



# Handy VBA based Excel Tool to Estimate Wetland Carbon Balance

• Excel Tool developed using Visual Basic



## **Acknowledgements**







### • Funding:

- NOAA NERRA (Collaborative; Grant No. NA09NOS4190153)
- NSF CBET (Award No. 1336911) (PI: Abdul-Aziz)
- FIU Faculty Start-Up Funding
- Data collection team:
  - Kevin Kroeger, Jim Tang, Serena Moseman-Valtierra
  - Kate Morkeski, Jordan Mora, Chris Weidman, James Rassman, among others.
- Project management team
  - Alison Leschen, Tonna-Marie Surgon-Rogers, Kate
     Harvey, Rebecca Roth