2ND ANNUAL CAPE COASTAL CONFERENCE

JUNE 5, 2014

Linking Science with Local Solutions and Decision-Making

Optimization of Bioretention Soil Mix for Nutrient Removal

James Houle UNH Stormwater Center, Environmental Research Group, Department of Civil Engineering University of New Hampshire

Special Thanks

Tom Ballestero – UNHSC Director Iulia Barbu – AECOM (UNHSC PhD Student) Tim Puls – UNHSC Robert Roseen – Geosyntec Robin Stone – UNHSC **Funders**: Stantec **EPA** Region 1

Part of the Problem – Point Source Pollution

tug Arizona as fire,started in an oil slick on the river,swept docks at the Great Lakes Towing Co.,here today.The blaze destroyed three tugs,three building and the ship repair yerds.Damage was not estimated. UNITED PRESS TELEPHOTO

Impact of Impervious Cover

LID in 2006

LID in 2013

TSS Removal Efficiencies

DIN Removal Efficiencies

TP Removal Efficiencies

Unit Operations & Processes (UOPs) in the Gravel Wetland

- Physical Operations
- Biological Processes
- Chemical Processes
- Hydrologic Operations

What we know

 Nitrogen is controlled through vegetative uptake and anaerobically through microbial denitrification

 Phosphorus is controlled through veg uptake and sorbed to electrostatically charged soil particles (clay/humus/orgnaic matter)

"Bioretention Design"

• 169,000 results!

www.leesburgva.gov/modules/ShowDocument.aspx?documentid=5057 BIORETENTION. Siting and Design Criteria. Prince George's County, Maryland. Page 1 of 60. Bioretention Design Specifications and Criteria ...

Experimental Design

Phase 1: Test Drain time and ISR:WQV Ratio

Phase 2: Test bioretention soil mix and four different soil amendments

Phase 3: optimize the ratio of loam to sand for P removal, as well as to further optimize the soil to soil amendment ratio for top mixes (Fe₂ and WTR)

Nitrogen

Mass loading for DRO, Zn, NO3, TSS as a function of normalized storm volume for two storms: (a) a large 2.3 in rainfall over 1685 minutes; (b) a smaller 0.6 in storm depth over 490 minute. DRO=diesel range organics, Zn= zinc, NO3= nitrate, TSS= total suspended solids

Phase 1

Column #	Soil Mix and saturation zone size	Notes
T1-N0	UNHSC BSM with no saturation zone (control)	 Drainage to filter ratio 80:1 Soil depth in columns: 24" 12 hour drain time
T1-N1	UNHSC BSM with 25% WQV	
T1-N2	UNHSC BSM with 50% WQV	
T1-N3	UNHSC BSM with 75% WQV	• Soil tested: UNHSC mix
T1-N4	UNHSC BSM with 100% WQV	
T1-N5	UNHSC BSM with 25% WQV	• Drainage to filter ratio 80:1
T1-N6	UNHSC BSM with 50% WQV	 Soil depth in columns: 24" 30 hour drain time
T1-N7	UNHSC BSM with 75% WQV	
T1-N8	UNHSC BSM with 100% WQV	• Soil tested: UNHSC mix

- Size ISR
- Retention Time

Nitrogen Results

Nitrogen Results

Phosphorus

Phase 2: Phosphorus

Column #	Soil Mix	Notes
T2-P0	UNHSC BSM (control)	
T2-P1	UNHSC 95% BSM + 5% WTR	
T2-P2	UNHSC 90% BSM + 10% WTR	• Drainage to filter ratio 80:1
T2-P3	UNHSC 97% BSM+3% Fe ₂	
T2-P4	UNHSC 94% BSM+6% Fe ₂	• Soil depth in columns:
T2-P5	UNHSC 97% BSM+3% Slag	24"
T2-P6	UNHSC 95% BSM+5% Slag	• 24 hour drain time
T2-P7	UNHSC 95% BSM +5% Limestone	• Soil tested: UNHSC mix
T2-P8	UNHSC 90% BSM +10% Limestone	

Phosphorus Results

Phase 3: Phosphorus Optimization

Column #	Soil Mix	Notes
T4-P1	90% Stantec loam + 10% sand	 Drainage to filter ratio 25:1 Soil depth: 12" Percentage of amending materials was based on test results from Phases 2 and 3
T4-P2	75% Stantec loam + 25% sand	
T4-P3	60% Stantec loam + 40% sand	
T4-P4	45% Stantec loam + 55% sand	
T4-P5	30% Stantec loam + 70% sand	
T4-P6	15% Stantec loam + 85% sand	
T4-P7	100% sand	
T4-P8	0.5% Fe ₂ + 99.5% UNHSC mix	
T4-P9	2% WTR + 98% UNHSC mix	

Optimization Results

Conclusions - the obvious!

- Compost leaches nutrients
- Filters are superior at sediment removal
- Hydraulic loading ratio and retention time have a large influence on performance

Conclusions – the promising...

- Modified bio systems show remarkable improvements to DIN and Ortho-P removals in the lab and in the field: ~ 60 - >90%
- Nitrogen removal is less media dependent and improves with ISR and with longer retention
- Loam has an excellent P-sorp capacity and should be incorporated in higher proportions in BSM

Conclusions – the curious...

- Details regarding BSM components are vague at best
- If optimal RE are to be achieved designs should be fine tuned and systems maintained

Questions?

an and find to

Contraction of