

Nutrient and climate change effects on coastal marshes and implications for management

Cathy Wigand

Anthropogenic impacts to salt marshes

- Nutrient over-enrichment
- Accelerated sea level rise
- Increase in the frequency and severity of storms

Marsh sustainability depends upon:

- Sediment supply
- Organic matter accumulation

Is nutrient enrichment a marsh stressor? Southeast US, Minerogenic marsh system, North Inlet-Winyah Bay, SC, High sediment loads, 20 mg/L

control +P +N +N+P

North Inlet – Winyah Bay Fertilization Experiment, 1 g N m⁻² d⁻¹ Wigand et al. 2015

North Inlet- Winyah Bay fertilization experiment

Northeast US, Organogenic marsh system, Jamaica Bay, NY

N Loading rate: 300 mg N m⁻² d⁻¹

Black Bank, Deteriorating marsh 💳

Effect of Nutrient Addition on a Salt Marsh System with Low Sediment Supply and High Inundation

Organogenic systems depend upon plant production and sub surface expansion to build up peat.

Very little sediment input in Jamaica Bay!

CT cross section images of Jamaica Bay

Most deteriorated: Big Egg Moderately deteriorated: Black Bank Stable: JoCo marsh

Jamaica Bay marsh soil CO₂ efflux

Point of nutrient addition and area of exposure matter, Plum Island, MA

- Low sediment supply system;
- Low organic sediments;
- Long-term fertilization experiments

Fertilized Sweeney creekbank, Deegan et al. 2012

Fertilized marsh platform, Laws Pt., courtesy: K. Sundberg

Field Conclusions

- Nutrients increase belowground productivity in minerogenic systems and can decrease it in organogenic systems
- Marsh soil carbon dioxide efflux increases with nutrient additions

Stressor: Accelerated sea level rise

Annual average sea level at New London, CT. Sea level data comes from the NOAA New London, CT tide gage. Open circles indicate sea levels from 1939-1979 (y=0.0019x – 2.33, R²=0.46) and filled circles indicate sea levels from 1980-2013 (y=0.0047x – 7.91, R²=0.71). Dashed trend line represents entire dataset (y=0.0026x –3.53, R²=0.76).

Bristol, Colt State Park, RI tidal channel expansion

Narrow River Estuary, RI marsh ponding

Loss of high marsh habitat for salt marsh sparrow

Field mesocosm research

Watson et al., 2014.

Productivity responds to elevation

Watson et al., 2014, Climatic Change.

Profiled locations

Elevation distribution for 38 NE salt marshes

Narragansett Bay marshes

Watson, unpublished data.

€PA

Key Findings

- Tidal marsh vegetation changes are linked with marsh elevation
- Marshes lack elevation capital

Greenhouse multi-stressor research

The Greenhouse Isotope Study

In all three cases, the ambient treatment had significantly greater uptake of % N than the storm treatment at the mid and high elevations; no difference at the low elevations.

Oczkowski et al. 2015.

Recommendations to Sustain Coastal Salt Marshes of Narragansett Bay

US EPA is working with State and Federal partners to develop climate adaptation strategies

Climate-change Adaptation Strategy For Salt Marshes

