

CAPE COASTAL CONFERENCE December 4-5, 2018

Innovative use of SLAMM to guide wetland restoration planning and adaptive management decisions for the Herring River Estuary

Presenter: Elise Leduc

g

Herring River Restoration Project

Background *Herring River Restoration Project*

Winter 1908-09

Images courtesy of the Wellfleet Historical Society

Herring River Restoration Project

Herring River Restoration Project

SLIDE GATES (6' WIDE) COMBINATION SLIDE/FLAP GATES (6' WIDE) PRE-CAST CONCRETE PANELS (6-4' WIDE)

- 7 slide gates, 2 combination slide/flap gates, 16 pre-cast concrete panels
- Provides full operational control during all phases of the restoration
- In the early stages, the restoration process will rely on slide and combination gates and not full panel removal

Herring River Restoration Project

Herring River Restoration Project

Adaptive Management Approach

- The Herring River Restoration Committee has developed a comprehensive adaptive management strategy to restore this system.
- A targeted ecological modeling effort was undertaken to understand how wetland types will change in response to the alterations in tidal regime.

SLAMM What is SLAMM?

Sea Level Affecting Marsh Migration

Edit Sites and Subsites

Parameter	Global	SubSite 1	SubSite 2			
Description	Whole Panel	Home Meado	Rumney Mars			
NWI Photo Date (YYYY)	2011	2011	2011			
DEM Date (YYYY)	2010	2010	2010			
Direction Offshore [n,s,e,w]	East	East	East			
Historic Trend (mm/yr)	2.8	2.8	2.8			
MTL-NAVD88 (m)	-0.1822	-0.1822	-0.1822			
GT Great Diurnal Tide Range (m)	3.12	0	1.56			
Salt Elev. (m above MTL)	1.56	0	0.78			
Marsh Erosion (horz. m /yr)	0	0	0			
Swamp Erosion (horz. m /yr)	0	0	0			
T.Flat Erosion (horz. m /yr)	0	0	0			
RegFlood Marsh Accr (mm/yr)	2.8	2.8	2.8			
IrregFlood Marsh Accr (mm/yr)	2.8	2.8	2.8			
Tidal-Fresh Marsh Accr (mm/yr)	0	0	0			

SLAMM

How is SLAMM typically used?

 Originally designed to simulate the dominant processes involved with wetland conversions due to sea-level rise

Limitations

- No hydrodynamics
- Simple erosion model
- Empirical accretion rates
- No mass balance of solids

SLAMM

How we applied it...

• Because water level is the main factor driving wetland conversion, simply specifying different tidal ranges from each gate opening can drive change

SLAMM

How we applied it...

• Because water level is the main factor driving wetland conversion, simply specifying different tidal ranges from each gate opening can drive change

GDTR by Sub-basin	Existing Cond.	Fully Open	1 slide 2 flap	1 slide 2 flap	1 slide 2 flap	2 slide 2 flap	2 slide 2 flap	2 slide 2 flap	3 slide 2 flap	4 slide 2 flap	4 slide 2 flap	4 slide 2 flap	5 slide 2 flap	5 slide 2 flap	6 slide 2 flap	6 slide 2 flap	7 slide 2 flap	7 slide 2 flap	All Open	All Open
Opening Height (feet)	NA	NA	1	2	8	1	2	6	10	1	6	8	2	6	2	6	1	10	3	7
Lower Herring River	2.56	8.94	2.00	2.41	3.35	2.56	3.32	4.29	4.96	3.48	5.74	5.96	5.09	6.18	5.28	6.43	4.56	6.86	7.22	7.80
Mill Creek	0.82	6.12	0.25	0.55	1.77	0.52	1.13	2.59	2.84	1.12	3.41	3.67	2.53	3.69	2.81	3.89	1.98	4.45	4.80	5.44
Duck Harbor	0.00	2.46	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.34	0.43	0.00	0.43	0.08	0.59	0.00	1.09	1.47	2.00
Upper Herring River	0.00	1.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.00	0.44	0.59	0.90
Upper Pole Dike Creek	0.00	1.95	0.00	0.00	0.00	0.00	0.00	0.22	0.11	0.00	0.50	0.49	0.16	0.42	0.21	0.40	0.11	0.56	0.88	1.46
Upper Bound Brook	0.00	1.10	0.00	0.00	0.00	0.00	0.00	0.22	0.15	0.00	0.31	0.31	0.17	0.28	0.25	0.30	0.00	0.32	0.31	0.40
Mid Herring River	0.72	2.97	0.30	0.48	1.44	0.47	0.93	1.94	1.97	0.94	2.15	2.22	1.87	2.15	1.98	2.15	1.51	2.39	2.38	2.40
Lower Bound Brook	0.00	1.13	0.00	0.10	0.73	0.09	0.35	0.66	0.34	0.31	0.44	0.43	0.63	0.38	0.62	0.41	0.64	0.61	0.67	0.91
Lower Pole Dike Creek	0.00	2.74	0.00	0.00	0.00	0.00	0.00	0.62	0.56	0.00	0.85	0.91	0.56	0.81	0.65	0.89	0.34	2.79	1.68	2.27

Simulations for different gate openings

Results include

- Change in total acres of each wetland type
- Raster-based map outputs to visualize and spatially evaluate changes

Results *Refined using modeled salinity*

6.00 3 slides, 2 flaps, 10 feet Upland Historical Wetland Nontidal Wooded Swamp Fresh Emergent Marsh Tidal Fresh Emergent Marsh Scrub-Shrub Freshwater Wetland Brackish Marsh Low Salt Marsh High Salt Marsh Tidal Flat Beach Freshwater Subtidal Marine Subtidal 0.25

Refined Classifications

2

Simulations for different gate openings

- Change in total acres of each wetland type
 - 5 example gate openings
 - Lower Herring River sub-basin

Simulations for different gate openings

- Change in total acres of each wetland type
 - 5 example gate openings
 - Mid Herring River sub-basin

Simulations for different gate openings

• Raster-based map outputs to visualize and spatially evaluate changes

g

છું

Moving forward

SLAMM results feed into adaptive management decision process

- Results feed directly into a broader 38-measurement endpoint decision tool
- Provide predictions for habitat type and viewscape objectives
 - How many acres of emergent vegetated wetland?
 - How many acres of dead standing trees?
- Assist restoration managers in
 - Choosing gate openings that produce desirable equilibrium habitat conditions
 - Identifying scenarios that may require secondary management actions (tree removal, additional sediment)
 - Eliminating alternatives too small to affect any meaningful change

Questions?

Contact Information: Elise Leduc - eleduc@whgrp.com

Acknowledgements: Kirk Bosma, Woods Hole Group; Tim Smith, Cape Cod National Seashore; Eric Derleth, U.S. Fish & Wildlife Service