

Dynamics in Using Shellfish Harvest for Nitrogen Mitigation

Josh Reitsma, Cape Cod Cooperative Extension & Woods Hole Sea Grant

Using shellfish to address nitrogen pollution

- Not sponges of nitrogen
- Accumulate nitrogen as they grow
 - Nitrogen feeds algae > algae feeds shellfish > shellfish grow

N Content in Local Shellfish

- How much?
- Do oysters have more than quahogs?
- Does it vary by waterbody?
- Is there seasonal variability?

Shellfish Nitrogen Content

Kg of N:

- 3600 oysters
- 4500 quahogs

Shell

Tissue = Meat

Difference by Season

- Meat content is much higher in Fall
 - 98% and 63% more for oysters and quahogs
- Fall/winter harvest would maximize potential

Differences in Oyster and Quahog Tissue by Season

Oyster and Quahog Total N Content by Season

Does Source of Shellfish Matter?

- Some but may be related to age and/or health of shellfish harvested
- Worth <u>verifying</u> in each stock

	Shell Length (mm)	Shell DW (g)	Tissue DW (g)	Tissue %N	Shell %N	Total N (g)	Total % N (DW)
	Quah	ogs from	Cape Cod	this stu	dy)		
Wild	57.1	32.6	2.43	7.50	0.18	0.24	0.67
Cultured	55.0	29.6	1.99	7.90	0.17	0.21	0.66
Quahog avg	56.1	31.2	2.22	7.69	0.18	0.22	0.67
W	ild quaho	gs from V	/irginia (S	isson et	al. 201	1)	
	NS	NS	NS	5.96	0.15	NS	NS
	Oyste	ers from C	ape Cod	(this stud	dy)		
Wild	82.7	46.0	2.42	8.20	0.26	0.31	0.67
Cultured On	84.9	47.4	2.70	7.89	0.26	0.32	0.65
Cultured Off	83.1	35.7	2.36	7.95	0.21	0.26	0.70
Off Triploid	86.5	22.3	1.36	8.50	0.32	0.19	0.82
Oyster avg	83.8	40.9	2.43	8.01	0.24	0.28	0.69
Wild	oysters fi	om reefs	in Chesa _l	peake (N	ewell 2	(004)	-1
	76.0	150.0	1.00	7.00	0.30	0.52	0.34
Cultured fl	oating ca	ge oyster:	s - Chesap	oeake (H	iggins	et al. 20	11)
	85.5	37.6	1.58	7.28	0.17	0.18	0.45

Adapted from: Newell and Mann 2012

Table 3 Quahog and oyster data summary with literature comparisons. Adapted from Newell and Mann 2012. NS indicates values were not specified.

Source of Nitrogen?

 N signature indicated some of that nitrogen originated from human sources

Buzzards Bay and South Cape

The Bigger the Better

- More nitrogen as they grow larger
 - Also more risk to losing them

Challenges with Shellfish

- Adequate resources
- Social acceptability of use of space
- Seed availability
- Weather storms/ice
- Disease
- Harmful algal blooms
- Predation

Another Challenge?

 Making sure they get to market

Ramping up...

- ...Requires infrastructure
 - Public landings/docks/piers/waters
 - Are they adequate for ramped up production?
 - Will there be competition with other users?

Lots of Production

 North America is investing heavily in oyster production...is market side ready for it?

Quahog - flat value example

Rough prices to harvester per littleneck (MA):

- 1981, 14 to 22 cents
- 1994, 13-18 cents
- 2002, 18 cents
- 2013, 22 cents
- 2018, 22-25 cents

- Fairly flat, not rising with inflation
 - Coastwide production is up
- Value in FL is around 10 cents per clam, little change

Oyster Value Volatility

- More so in "wild" fisheries
- Wild harvesters have nothing invested so they can accept much cheaper prices
 - "cannibalize" some of current market share and drive down the price
 - Lack control over growth/size and appearance in wild oysters

2015 MA data

Other Oyster Market Opportunities?

- Shucked meats
 - Smoked, tinned, etc.

Why would we do shucked product?

- Market is not picky don't have to be pretty
 - Production can be less labor intensive
- Bigger oyster meats usually worth more
 - Better N mitigation potential
- Reduced handling for harvesters (I think)
- Value added possibilities
- Expands current markets

Why are we not doing this?

- Lower value per piece
- It requires infrastructure
 - Especially to aid in shucking process
- Labor force can be a challenge
- Slim margins = little interest
 - May require some help up front
 - N removal credits?

Food for Thought

- Removing nitrogen through shellfish requires a lot of shellfish...
- Ramping up shellfish production requires a market strategy...

- Can we grow market opportunities & protect current aquaculture markets-value?
- Where do we see these projects long term?

Acknowledgements

- Shellfish samples for nitrogen content from private growers and municipal shellfish programs
- Boston University Stable Isotope Lab
- Barnstable County for funding nitrogen portion
- NOAA Sea Grant for funding market work

- For more information:
 - https://www.capecodextension.org/
 - https://web.whoi.edu/seagrant/