

Working towards an ecosystem level understanding of how different oyster aquaculture practices alter nitrogen cycling.

Daniel Rogers, Stonehill College

Virginia Edgcomb and Vivian Mara, Woods Hole Oceanographic Institution Chuck Martinsen and Christina Lovely, Falmouth Marine and Env. Services Tonna-Marie Rogers and Joan Muller, WBNERR Eric Karplus, Science Wares

Funding Provided by:

The Problem

- Populations on septic tanks, fertilizers, etc. introduce a lot of nitrogen (N) into coastal waters
- Many Cape towns are considering shellfish as part of their nitrogen management plan (208 plan)
- We do not fully understand the entire benefits package of shellfish aquaculture
- Need quantitative data on N-removal and oyster growth so decision makers can manage resources and meet water quality goals

The Ecology

- Nitrogen is produced through human activity
- Nitrogen act as a fertilizer to plankton in the water driving a production of biomass
- Oysters can eat the plankton and sequester nitrogen in their tissue or export nitrogen to the sediments.
- Once in the sediment the nitrogen may be converted to gas by microbes and leave the ecosystem

Nitrogen transformations in the environment

The Big Questions

- Does aquaculture activity change N₂ flux from the sediments?
- ► Is there enough N₂ generated to be included in the N management planning?
- How are the underlying sediment altered microbiologically or chemically?
- Are there proxy measurements for N-removal estimates that can be utilized by end-users (i.e. a Strep-throat test)

N-removal across environments

N-removal across environments

7 to 17% additional N-removal over harvesting oysters

Project Overview:

Objective: evaluate oyster growth and the sedimentary N-removal efficiencies, for a standard oyster biomass, of three aquaculture systems

Approach:

- Assess the growth of the oysters
- Quantify geochemical fluxes across the sediment/water interface
- Monitor the microbial activity and composition in the underlying sediments.

Flux core measurements:

Sediment oxygen demand

- N₂-removal (denitrification) is highest in sediments underlying bottom cages
- N₂-removal (denitrification) is higher under all the aquaculture systems than under in control sediments.

- Potential rates from isotope or flux incubations are limited
 - Snapshot in time
 - Altered by sampling
- Mass balance approach
 - Requires measurements of every pool
 - Integrates over longer time periods
 - Does not specifically tell you rates of processes
 - Algorithms may apply to other systems

Table 1. Data Collection and Analysis Matrix

	-	
Field Measurements	Geochemistry	Molecular
Year 1 and Year 2:	Year 1 and Year 2:	Year 1:
Measurements: Conductivity, DO, pH, temperature, turbidity, oyster mass Sediment Traps: Total C, inorganic C, total N, total section $C:N, \%C, \%N, \delta^{13}C, \delta^{15}N$ Sediment Traps: Total C, inorganic C, total N, total section $C:N, \%C, \%N, \delta^{13}C, \delta^{15}N$ C:N, $\%C, \%N, \delta^{13}C, \delta^{15}N$ C:N, $\%C, \%N, \delta^{13}C, \delta^{15}N$ Water column: $NO_3^-, NO_2^-, NH_4^+, \delta^{15}NO_3^-, \delta^{15}NO_2^-, \delta^{15}NH_4^+, PO$ PON	Sediment Traps: Total C, inorganic C, organic C, total N, total sulfur, C:N, %C, %N, δ^{13} C, δ^{15} N Water column: NO_3^- , NO_2^- , NH_4^+ , $\delta^{15}NO_3^-$, $\delta^{15}NO_2^-$, $\delta^{15}NH_4^+$, POC, PON Porewater: NO_3^- , NO_2^- , NH_4^+ , DO, $\delta^{15}NO_3^-$, $\delta^{15}NO_2^-$, $\delta^{15}NH_4^+$	Sediment cores: RNA and DNA extraction for RT-qPCR, metatranscriptome library preparation, and iTag sequencing Water Column: Chlorophyll A Year 2: Sediment cores: DNA
	Oyster Tissue: Total N , C:N, %C, %N, δ ¹³ C, δ ¹⁵ N	extraction, iTag sequencing Water Column: Chlorophyll A

Mass Balance

How much of the ambient N moves into the oyster tissue?

$$[N_{oyster-meas}] \ \delta_{oyster-meas} = [N_{oyster-initial}] \delta_{oyster-initial} + \epsilon [N_{plk}] \delta_{plk}$$

How much N makes it to the sediments (export N)

$$[N_{trap}]\delta_{trap} = [N_{plk}]\delta_{plk} + [N_{psuedofeces}]\delta_{puesdofeces} - \epsilon[N_{respiration}]\delta_{respiration}$$

• How much N is removed (missing) from the sediments

$$[N_{\text{seds-meas}}]\delta_{\text{seds-meas}} = [N_{\text{seds}}]\delta_{\text{seds}} + [N_{\text{trap}}]\delta_{\text{trap}} - \epsilon_{\text{remove}}[N_{\text{loss}}]\delta_{\text{loss}}$$

Nitrogen Modeling Through Coastal Waters

Acknowledgements

- Stonehill
 - ► Amanda Pepe
 - ▶ Dan Stone
 - ► Janelle Shea
 - ► Kyle Paquette
 - ► Parker Dunn
 - ► Emily Gibeault
 - ► Meghan Curran
 - ► Claire Farnan
 - ► Anna Pickney
 - ▶ Pete Giannini
 - Everton Pacheco

- ► WHOI
 - Vivian Mara
 - ► Alec Cobban
 - ▶ Claudia Mazur
 - ► Becka Bense
 - ► Emma Keeler
 - Sarah Lott
 - Becka Cox
 - David Beaudoin
 - ► Taylor Sehein

- Falmouth
 - Chuck Martinsen
 - Christina Lovely
 - MES staff and volunteers
- WBNERR
 - ► Tonna-Marie Rogers
 - Joan Muller
 - ▶ Jim Rassman

