

Outline

Background

Aeration (Destratification/mixing)

- Oxygen Saturation Technology[®]
- Summary
- Back to Science
 - Limnology
 - RedOx Chemistry
 - Biology
 - Algae Control

Goals

Understand Why Oxygenate

Reality of Oxygen Management

Benefits of Oxygen Saturation Technology[®]

The Water Column (Stratification)

Understanding (Additional) Water Lingo

• (RedOx) Chemistry

• Biology

Biology 101: Blue-Green Algae Cyanobacteria

- Evolved ~3.5 billion years ago, ubiquitous
 - warm,
 - well-lit,
 - eutrophic conditions, with
 - strong thermal stratification
- Important physiological traits:
 - o dormant cells (akinetes),
 - o gas vesicles,

Favored

Bv

- Outcompete other phytoplankton in warm waters
- secondary metabolites (toxins)
- Important for nutrient cycling: <u>nitrogen fixation</u> and <u>phosphorus storage</u>

(RedOx) Chemistry 101

Controlling Cyanobacteria (Theoretical)

Effectiveness of (Internal) Nutrient Control

Verburg et al., (2018). Nutrient Budgets in Lakes, Lake Restoration Handbook

Getting Oxygen Into Water

Mixing (Destratification)

(atmosphere as the oxygen source)

Enhancing (Enriching oxygen content)
(pressurized gas (O₂) as oxygen source)

Mixing

Aka: **Destrat**ification

Diffusing Air into Water

Porous Hose Line Diffuser

Ceramic Discs

EPDM Diffusers

Increased Gas Flow = Increased Oxygen Demand

Gantzer et al., (2009).

Bottom Aeration Case Study – Silver Lake– HAB control

Г

2014

epth Profile	- Depth 3			
epth (m) Temp DO %			DO mg/L	
urface	24.61	85.1	7.05	
1	24.54	83.4	6.97	
2	24.58	84.6	7.08	
3	24.56	85.6	7.12	
4	24.54	85.6	7.12	
5	24.55	84.9	7.06	
6	24.55	85.4	7.05	
7	24.50	82.2	6.84	
8	24.46	80.1	6.66	
9	24.38	71.3	5.95	
10	24.36	64.1	5.37	
11	23.94	9.1	0.71	

System Design:

- •148 cfm (119 CFM 1982 design)
- 41 diffusers fine pore EPDM membranes.

Information/data courtesy of Patrick Goodwin

Desired Dissolved Oxygen Levels

- Aquatic life Habitat Stiff et al., (1992)
- Phosphorus Iron-P
 - Harmful Algae Blooms (HABS)
- Nitrogen $NH_4^+ \rightarrow NO_3^-$ Beutel (2001)
- Metals Iron/Manganese Gantzer et al., (2009)
- Organic content in water/sediment
- Fecal Coliform

>8 mg/L (< 25) in the bulk water

> 10 mg/L (< 25) over the sediments

Destratification (Aeration) and Fisheries Management

Circulation decreases bulk water DO < optimal for fish

Destratification (Aeration) Performance Record

Table 4.3 Summary of goal achievement in case histories

	Goals Achieved		
Technique	Yes	Partial	No
HAC	22.2	67.7	11.1
DOX	90.9	9.1	0.0
DBC	75.0	25.0	0.0
SSS	80.0	20.0	0.0
DAC	57.2	28.5	14.2
UDP	15.3	38.5	46.2
DDP	55.5	44.5	0.0

SSS = Side Stream Supersaturation

DOX = Diffused Oxygen

HAC = Hypolimnetic Aeration Chamber

DBC = Downflow Bubble contact Chamber (Speece Cone)

→DAC = Diffused Air Circulation (20) UDP = Up Draft Pump DDP = Down Draft Pump

Wagner, (2015).

Oxygenation and Circulation to Aid Water Supply Reservoir Management

Destratification (Aeration) Take Aways

- Atmosphere is oxygen source, not bubbles.
- DO limitations
 - Throughout the water column
 - Over sediment
- Increases overall water temperatures
- Increased turbulence
 - o Causing increased DO demand
 - o Potential for sediment resuspension

Enhanced

Aka: Hypolimnetic Aeration

Direct Gas Sparging (>50 ft depth & Significant Hypolimnion Volume)

Saturation Technology

Saturation Technology aka: Side-Stream Saturation (SSS)

Oxygen Saturation Technology[®]

2023-07-18

Key Design Characteristics

- Uses oxygen gas (90% nominal purity)
- No bubbles
- No mixing (induced turbulence)
- Preserves thermal structure (ice cover and/or summer stratification
- Automated (DO feedback)
- Modular and Scalable

OST Installations

Results (Cape Cod, MA)

Results (Madison, WI)

Results (Geneva, WI)

Oxic / Anoxic Boundary (Why DO so high?)

Bryan et al., (2010).

Akinetes and the Sediment-Water Interface

Summary (*Cyanobacteria Control*)

- Air/atmosphere as O₂ source has limits to DO levels
- Pure O₂ higher achievable DO levels
- Higher DO in bulk water
- Oxic/anoxic boundary deeper
 - Akinetes Not in Contact w/PO₄⁻³
- NO bubbles
- NO Induced turbulence or sediment resuspension

Oxygen Saturation Technology [®] Key Takeaway(s)

Proactive strategy to prevent
Cyanobacteria from growing,

 Maintaining Oxygen as the terminal electron acceptor to maintain Fe-PO₄ bond, and

- 3. Maintain adequate O2 levels
 - Oxic/anoxic boundary
 - Habitat
 - Oxygen dependent processes

Thank You