Modeling Sea-Level Rise in Coastal Wetlands: Understanding Potential Impacts and Their Implications for Management on Cape Cod

Photo credit: Mike McHugh, MassDEP

Marc Carullo Massachusetts Office of Coastal Zone Management

Rick Meyerowitz, 2008. From Forecast by Nicholas Blechman.

Project Objectives

Understand potential for coastal wetland **habitat conversion/loss** under multiple scenarios of SLR

Massachusetts CLIMATE CHANGE ADAPTATION REPORT September 2011 Submitted by the Resouttee Office of Energy and Environmental Affairs and the Adaptation Advisory Committee

Identify and assess opportunities for and barriers to **marsh migration**

Engage stakeholders to better incorporate wetlands into **adaptation strategies** and planning efforts

© 2013 Copyright The Nature Conservancy

Four scenarios with estimates of SLR by 2100

United States National Climate Assessment (Parris et al. 2012), adjusted for local subsidence

Projected Scenario	Total Sea Level Rise (Boston)		
Lowest	0.249 m (0.82 feet)		
Intermediate Low	0.706 m (2.32 feet)		
Intermediate High	1.385 m (4.54 feet)		
Highest	2.164 m (7.10 feet)		

		Project T	imescale		
2011	2030	2050	2070	210	0

Models used: Sea-Level Affecting Marshes Model (SLAMM) Marsh Equilibrium Model (MEM)*

Average annual change in area by decade* from 2011-2100 for Cape Cod project panels.

Time Period (Decade) for Select SLAMM Classes

Potential Salt Marsh Trends from 2011-2100 Cape Cod | Intermediate High SLR Scenario

- > 3500 ha increase in reg-flooded marsh (low marsh zone), 225% ↑
- > 5500 ha decrease in irreg-flooded marsh (high marsh zone), 87% ↓
- Total loss of approximately 2000 ha of salt marsh, 25% ↓
- Marshes draining to Vineyard and Nantucket Sounds are potentially more susceptible to loss from SLR than those draining to Cape Cod Bay (i.e., tidal range sensitivity).

100 Years of Estuarine Marsh Trends in Massachusetts (1893 to 1995)

Potential Upland Marsh Migration w/in 100 ft Buffer South Shore | 2030-2100 Intermediate High SLR Scenario

North River, Marshfield

Land Use / Land Cover Distribution of Potential Migration Areas

*For illustrative purposes only

Marsh-Upland Border

✓ 2011✓ 2100

*For illustrative purposes only

COASTAL SQUEEZE

Select SLAMM Classes

GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, C OpenStreetMap contributors, and the GIS User Community

Intermediate High SLR Static accretion

Impervious Surface

Select SLAMM Classes

Intermediate High SLR Static accretion

Impervious Surface

Select SLAMM Classes

Intermediate High SLR Static accretion

Impervious Surface

Select SLAMM Classes

Intermediate High SLR Static accretion

Impervious Surface

Select SLAMM Classes

Intermediate High SLR Static accretion

Impervious Surface

Select SLAMM Classes

Intermediate High SLR Static accretion

Impervious Surface

Select SLAMM Classes

Marsh-Upland Border

✓ 2011✓ 2100

DRAFT

2100

New Boston Road

115 m

Intermediate High SLR Static accretion

Impervious Surface

Select SLAMM Classes

Marsh-Upland Border

✓ 2011✓ 2100

DRAF

Intermediate High SLR Static accretion

Lidar DEM

Marsh-Upland Border

~ 2011 **....** 2100

DRAFT

Impervious Surface

swisstopo, MapmyIndia, C OpenStreetMap contributors, and the GIS User Community

Eastham

Intermediate High SLR Static accretion

Impervious Surface
Select SLAMM Classes

Upland
Tidal Swamp
Trans. Marsh/Scrub-Shrub
Regularly-Flooded Marsh
Irregularly-Flooded Marsh
Non-tidal Swamp
Inland Fresh Marsh

Eastham Intermediate High SLR

Static accretion

Upland
Tidal Swamp
Trans. Marsh/Scrub-Shrub
Regularly-Flooded Marsh
Irregularly-Flooded Marsh
Non-tidal Swamp
Inland Fresh Marsh

Eastham Intermediate High SLR

Static accretion

- Trans. Marsh/Scrub-Shrub
 Regularly-Flooded Marsh
 Irregularly-Flooded Marsh
 Non-tidal Swamp
 - Inland Fresh Marsh

Eastham

Intermediate High SLR Static accretion

Regularly-Flooded Marsh
Irregularly-Flooded Marsh
Non-tidal Swamp
Inland Fresh Marsh

Eastham

Intermediate High SLR Static accretion

Inland Fresh Marsh

Potential Wetland Distribution by 2100 Under Four SLR Scenarios Parkers River, Yarmouth

- Outreach & Education
- Policy
- Land Conservation & Management
- Restoration
- Species Conservation
- Blue Carbon Accounting

- Outreach & Education
- Policy
- Land Conservation & Management
- Restoration
- Species Conservation
- Blue Carbon Accounting

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 5 - Order of Conditions Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 eDEP Tianaactos # Caylfown

B. Findings (cont.)

Coastal Resource Area Impacts: Check all that apply below. (For Approvals Only)

Proposed Permitted Proposed Permitted Alteration Replacement Replacement

- Outreach & Education
- Policy
- Land Conservation & Management
- Restoration
- Species Conservation
- Blue Carbon Accounting

and an exterior state of a second state of the state of the second second

- Outreach & Education
- Policy
- Land Conservation & Management
- Restoration
- Species Conservation
- Blue Carbon Accounting

Photo: Delaware DNREC

- Outreach & Education
- Policy
- Land Conservation & Management
- Restoration
- Species Conservation
- Blue Carbon Accounting

Illustration: Mass Audubon

DANYAL ADAPTATIC

Service and the service and the service of the serv

Photo: David Johnson

- Outreach & Education
- Policy
- Land Conservation & Management
- Restoration
- Species Conservation
- Blue Carbon Accounting

Illustration: The Blue Carbon Initiative's Coastal Blue Carbon

Next Steps

- Project website
 - Final SLAMM report
 - Overview and highlights
 - Additional data analyses and summaries
- Esri Story Map and MORIS web tools
- Stakeholder meetings
- Long-term monitoring projects
 - Remote sensing and field-based

Acknowledgements

Funding

- U.S. EPA Region 1
- NOAA Office for Coastal Management
- Project Team
- MA CZM
- MA DFG Division of Ecological Restoration (MA DER)
- Marine Biological Laboratory (MBL)
 Plum Island Ecosystems Long Term Research (PIE LTER) Project
- MassDEP
- Woods Hole Group

Data Contributors

- MBL/PIE LTER
- USFWS Parker River NWR

- NPS Cape Cod NS
- MassDOT
- MA DER
- Waquoit Bay NERR
- NOAA (CO-OPS)
- Woods Hole Group
- University of South Carolina Jim Morris

Warren Pinnacle Consulting, Inc. – SLAMM 6.2 James Morris, University of South Carolina – MEM 5.4.1

marc.carullo@state.ma.us