Rising to the challenge: Will tidal marshes survive rising seas?

Presented by: Jordan Mora, Waquoit Bay National Estuarine Research Reserve, Waquoit MA

Tidal marshes provide many benefits to nearby communities. They protect people and property against storm surges and flooding, improve water quality, and create habitat for commercially important fish and wildlife. Historically, marshes have remained in balance with rising sea levels through the accumulation of organic matter and sediments. However, the effectiveness of these two mechanisms depends on the local tidal range and sediment supply, which vary greatly across geographic regions. With sea levels projected to increase much faster with human-induced climate change, the fate of many marshes is now uncertain.

The Waquoit Bay National Estuarine Research Reserve (NERR) collaborated with 15 other NERRs to investigate regional differences in marsh resilience. The study is based on an innovative approach that evaluates five categories of resilience: marsh elevation; change in elevation; sediment supply; tidal range; and rate of sea level rise (see Figure 1). We refer to the set of metrics as **MARS indices**, assessing the tidal Marsh Resilience to Sea-level rise.

Figure 1: Diagram of the 5 major components in the MARS indices.

Sage Lot Pond (SLP) biomonitoring at the Waquoit Bay NERR: Elevation control marks, installed in 2011, were monitored for vertical movement with digital rod and level survey for two years (photo 1). Annual elevation measurements began in 2013 using a surface elevation table (photo 2). Annual tidal marsh vegetation monitoring (120 permanent, square-meter plots) started in August 2011 (photo 3). Real-time Kinematic GPS was used to obtain the elevation of each vegetation plot. Consistent, local water level recording started in 2013 (photo 4).

Table 1: Marsh resilience categories, metrics used, and data needs fo					
Category	Metric	Data nee			
Marsh elevation	Dereast of march holes, mean high water	Frequenc			
distributions	Percent of marsh below mean high water	Estimate			
	Percent of marsh in lowest third of plant distribution	Frequenc			
	Skewness	Frequenc			
Marsh elevation change	Elevation change rate (mm/yr)	Time-seri			
Sediment/accretion	Short-term accretion rate (mm/yr)	Time-seri			
	Long-term accretion rate (mm/yr)	Soil cores			
	Turbidity (NTU)	Mean tur			
Tidal range	Tidal range (m)	Mean dai			
Sea level rise	Long-term rate of SLR (mm/yr)	Long-terr			
	Short-term variability in water levels (mm)	Inter-ann			

Table 2: Color-coded results for metric categories and overall MARS index scores at 16 study sites.

	115	Marsh Namo and	CATEGORIES OF MARSH RES		
State		National Estuarine Research Reserve	Marsh Elevation	Elevation Change	Sedi Su
EAST COAST	NH	Great Bay Discovery Center, Great Bay			
	MA	Sage Lot Pond, Waquoit Bay			
	RI	Nag West, Narragansett Bay			
	NY	Outer Tivoli North, Hudson River			
	DE	St. Jones Reserve, Delaware			
	MD	Jug Bay, Chesapeake Bay			
	VA	Goodwin Island Reserve, Chesapeake Bay			
	NC	Masonboro Island, North Carolina			
	SC	Crabhaul Creek, North Inlet-Winyah Bay			
	SC	Big Bay Creek, ACE Basin			
	MS	Grand Bay, Grand Bay			
WEST COAST	WA	Sullivan Minor, Padilla Bay			
	OR	Hidden Creek, South Slough			
	CA	China Camp State Park, San Francisco Bay			
	CA	Upper Slough Marshes, Elkhorn Slough			
	CA	Oneonta Slough, Tijuana River			

r each metric.

v distribution of marsh elevation of mean high water

y distribution of marsh elevation

y distribution of marsh elevation

- es data from surface elevation tables
- es data from marker horizons
- for radiometric dating
- bidity from water quality sondes
- ly tidal range from water level loggers

n data from water station (e.g., NWLON)

ual data from water level station

The low resilience score at SLP is a product of two main limiting factors: a low sediment supply from the incoming tide and a relatively small tidal range (1-3 ft). At SLP the impacts of sea level rise are proportionally greater than at a site with a larger tidal range (e.g., 6-9 ft). For example, the metric *percent of marsh* below mean high water was >60% at SLP, versus <40% at the mid-Atlantic sites, indicating that recent sea level rise has increased flooding extent and duration more at the SLP marsh.

HOW DOES YOUR MARSH COMPARE? Comparing marsh resiliency based on MARS indices the can management efficacy and help shape policy across local, regional, and national scales. For example, marshes that have an overall low resilience score may be better slated for facilitation of migration rather than restoration actions such as sediment augmentation. Apply the MARS index assessment to determine the best management approach for protecting tidal marshes in your area. www.nerra.org/marsh

Reference:

Raposa, K.B., K. Wasson, E. Smith, J.A. Crooks, P. Delgado, S.H. Fernald, M.C. Ferner, A. Helms, L.A. Hice, J.W. Mora, B. Puckett, D. Sanger, S. Shull, L. Spurrier, R. Stevens, and S. Lerberg. 2016. Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-metric indices. Biological Conservation.

http://dx.doi.org/10.1016/j.bicon.2016.10.015

Acknowledgements:

Kenny Raposa and Kerstin Wasson led the MARS effort. WBNERR staff, interns, and volunteers assisted with field data collection. Vitalii Sheremet collected and analyzed water level data at Sage Lot Pond. Photos courtesy of Chris Weidman, Vitalii Sheremet, and Jordan Mora.

NERRA National Estuarine Research Reserve