

Fighting the Rising Tide: Diminished Septic System Performance Due to Climate Change Jennifer Cooper University of Rhode Island

Acknowledgements and Funding

Funding:

- RI Agricultural Experiment Station
- USDA Hatch Multi-state Project NE-1045
- URI Sea Grant
- URI Enhancement of Graduate Research Awards
- URI Undergraduate Research Awards

Research Team:

- Jose Amador NRS
- Tom Boving GEO
- George Loomis NRS & NEOWTC
- Dave Kalen NRS & NEOWTC
- Ivan Morales Ph.D. student

Undergraduate Helpers:

- Juliana DeLuca
- Ethan Sneesby
- Joshua Sargent
- Ian Rambo
- Rachel Naylor
- Faith Anderson

How We Treat Human Waste

Distribution of OWTS in the United States

The Problems

Microorganisms:

- Bacteria
- Viruses
- Protozoan
- Worms

Nutrients-N&P:

- Eutrophication
 - Fresh P
 - Coastal N
- Anoxia

BOD:

• Low O₂/Anoxia

OWTS Drainfield Treatment

Microorganisms:

- Predation
- Adsorption/ filtration

BOD:

Microbial degradation

Climate Change - Northeast

Intergovernmental Panel on Climate Change (2013 report):

100 year predictions (Northeast) –

- Sea levels rise 3-5 ft.
- Increased precipitation
- Elevated temperature 2-5°C

Chronic Effects of Climate Change

OWTS function under elevated sea level / groundwater conditions

Source: NEOWTC @ URI

Physical Effects of Rising Temperature

Biological Effects of Rising Temperature

Fig. 4 Seasonal temperature dependence of soil respiration. Each square is a mean of six flux and temperature measurements made at one of the study areas at one date. The fitted function is:. Flux = $21.13 \times e^{(0.1371 \times \text{temp})}$. $R^2 = 0.80$, which is significant at $\alpha = 0.01$ (d.f. = 154).

The Experiment:

How Will Climate Change Impact OWTS?

Intact Soil Mesocosms

Present Climate vs. Climate Change

Biochemical Oxygen Demand (BOD)

Conventional

Advanced

Increased temperature likely speeds microbial C degradation

Fecal Coliform Bacteria

Conventional

Advanced

Increased moisture likely diminished microbial attachment

MS2 Bacteriophage - Virus

Conventional

Advanced

- No virus in output water
 - Present climate and climate change conditions
 - For all drainfield types
- PH more important than wetter/hotter conditions
 - Virus will have (+) charge at drainfield pH (~3.2)
 - Aids in retention to (–) charged soil particles

Total Nitrogen

Conventional

Advanced

Conv.: Increased moisture, more anoxia, more hetero. denit. Adv.: Temperature increased C degradation, limited hetero. denit.

Total Phosphorus

Conventional

Advanced

Increased moisture likely caused reduction/dissolution of metals allowed P mobilization

Technology Performance

Mass of contaminants released from one year of operation

<u>Conventional</u> – better fecal coliform bacteria and total N removal <u>Advanced</u> – better BOD and total P removal

Potential Mitigation Measures

 Organic carbon amendment (e.g. wood chips)

Pre-treatment – less reliance on soil

Summary Effects of Climate Change

Positive Effect Negative **Fecal coliform** BOD bacteria Total N* Total N* Total P WE SIMPLY DROP

A GIANT ICE CUBE INTO THE OCEAN EVERY NOW AND THEN.