$5{ }^{\text {TH }}$ Annual Cape Coastal Conference

The Value of Long-term Monitoring for Guiding Restoration Efforts - Warming Trends and Water Quality

Jennie Rheuban

Rachel Jakuba, Jordan Mora, Joe Costa, and Scott Doney

WAQUOIT BAY
National
EstuArine
Research
reserve

Outline

-Why do we care about water quality?
-What causes poor water quality?
-Stories from Waquoit Bay
-Stories from Buzzards Bay

- What does this mean for management?
-Stories from Waquoit Bay
-Stories from Buzzards Bay
- What does this mean for management?
-Stories from Waquoit Bay
-Stories from Buzzards Bay
- What does this mean for management?

Why do we care about water quality?

Good water quality provides us with benefits we enjoy, like clean and clear water and abundant fish and wildlife.

What causes poor water quality?

(a) Impact:

No Problem flow

Moderate

Moderate high

Key to symbols:

aquatic vegetation
Chlorophyll a
Nuisance/toxic
blooms (HAB)Macroalgae
(3) Dissolved oxygen

Bricker et al. 2008
Influencing factors

Waquoit Bay NERR Water Quality Monitoring Sites

BayWatcher (BW) Citizen Water Quality Monitoring Program

Site \#1-5: 1993 - present Site \#6: 1995 - present Site \#7: 1996 - present Site \#8: 2003 - present Site \#9: 2008 - present

Parameters Collected:

- Water Temperature
- Turbidity
- Surface \& Bottom Depth
- Salinity
- Dissolved Oxygen (mg/L and \%)
- Nutrients (NH4, NO2/3, PO4, SiO4, DON)
- Chlorophyll - a

System-Wide Monitoring Program (SWMP)

Site \#1: Metoxit Point
Site \#2: Menauhant Yacht Club
Site \#3: Sage Lot
Site \#4: Childs River

(1998 - present)

(2001 - present)
(2002 - present)
(2002 - present)

Parameters Collected:

- Water Temperature
- Turbidity
- pH
- Water Depth
- Specific Conductivity/Salinity
- Dissolved Oxygen (mg/L and \%)
- Nutrients (NH4, NO2/3, PO4, SiO4, DON, TN)
- Chlorophyll-a

BayWatchers - Temperature

Sites 1-5, Years 1994-2011

Note: Did not include years 2012-2014 because of sampling frequency change in fall season

Linear Regression by season

Winter: $R^{2}=0.001, F=0.267, p=0.605$
Spring: $\mathrm{R}^{2}=0.011, \mathrm{~F}=6.081, \mathrm{p}=0.014$
Rate of change: $0.09^{\circ} \mathrm{C} / \mathrm{yr}\left(4^{\circ} \mathrm{F}\right.$ over 20 years)
Summer: $R^{2}=0.009, F=9.903, p=0.002$
Rate of change: $-0.02^{\circ} \mathrm{C} / \mathrm{yr}\left(-1^{\circ} \mathrm{F}\right.$ over 20 years)
Fall: $R^{2}=0.015, F=11.274, p=0.001$
Rate of change: $0.16^{\circ} \mathrm{C} / \mathrm{yr}\left(6^{\circ} \mathrm{F}\right.$ over 20 years)

Baywatchers - Dissolved Oxyygen

Sites 1-5, Years 1994-2014

Linear Regressions (growing season only)

June: $R^{2}=0.035, F=13.870, p=0.000$
Rate of change: -0.6\% per year (12\% over 20 years)
Jul/Aug: $\mathrm{R}^{2}=0.039, \mathrm{~F}=32.518, \mathrm{p}=0.000$
Rate of change: -0.7% per year (14% over 20 years)
September: $\mathrm{R}^{2}=0.054, \mathrm{~F}=20.709, \mathrm{p}=0.000$
Rate of change: -0.9% per year (18% over 20 years)

Baywatchers Chilorophylll-a (September Only)

Years 1998-2014; Head of tide, riverine sites

Buzzards Bay, MA

Buzzards Bay Coalition’s Baywatchers

-The Baywatchers Program began in 1992.
-Volunteers measure water quality indicators from May to September. -Over 1600 citizen-scientists!! - Nutrients, temperature, salinity, dissolved oxygen

Where have the Baywatchers collected data?

-Over 330 places have been sampled!!!

Where have the Baywatchers collected data?

Long-term trends, spatial patterns in water quality

Where have the Baywatchers collected data?

Long-term trends, spatial patterns in water quality

West Falmouth Harbor

West Falmouth Harbor

Nutrient oops!!

West Falmouth Harbor

Total Nitrogen (uM)

West Falmouth Harbor

Total Nitrogen (uM)
Chlorophyll

West Falmouth Harbor

Chlorophyll

Nitrogen

Dissolved Oxygen

West Falmouth Harbor

Where have the Baywatchers collected data?

Long-term trends, spatial patterns in water quality

Decadal Trends

Yield of Chla higher in a warmer world

Rheuban et al. 2016

Yield of Chla higher in a warmer world No management +

Nitrogen
Rheuban et al. 2016

Yield of Chla higher in a warmer world

Management efforts to improve water quality may not look like they have produced positive results, but...

Without those efforts, things may have looked a LOT worse.

Conclusions

-We are seeing local impacts of climate change here up to 2C ($\sim 4 F!)$ warming over several decades
-Water quality indicators suggest declines in water quality in many places of Buzzards and Waquoit Bays
-In Buzzards Bay, Chlorophyll is increasing in more places than nutrients

- Higher yield of Chla/TN at present - Has substantial implications for management in the future

Thanks!

MacArthur Foundation

http://www.whoi.edu/sites/coastal_climate_change_solutions

