

5TH ANNUAL CAPE COASTAL CONFERENCE

The Value of Long-term Monitoring for Guiding Restoration Efforts – Warming Trends and Water Quality

Jennie Rheuban

Rachel Jakuba, Jordan Mora, Joe Costa, and Scott Doney

Outline •Why do we care about water quality? •What causes poor water quality? •Stories from Waquoit Bay Stories from Buzzards Bay •What does this mean for management? ANOGRA

Why do we care about water quality?

Good water quality provides us with benefits we enjoy, like clean and clear water and abundant fish and wildlife.

What causes poor water quality?

Bricker et al. 2008

1930

How might global change impact water quality?

Waquoit Bay NERR Water Quality Monitoring Sites

Map by Jordan Mora, March 2016. Data provided by WBNERR and MassGIS

BayWatcher (BW) Citizen Water **Quality Monitoring Program**

Site #1-5: 1993 - present Site #6: 1995 - present

Site #7: 1996 - present Site #8: 2003 - present Site #9: 2008 - present

Parameters Collected:

- Water Temperature
- Turbidity
- Surface & Bottom Depth
- Salinity
- Dissolved Oxygen (mg/L and %)
- Nutrients (NH4, NO2/3, PO4, SiO4, DON)
- Chlorophyll a

System-Wide Monitoring Program (SWMP)

Site #1: Metoxit Point (1998 - present) Site #2: Menauhant Yacht Club (2001 - present) Site #3: Sage Lot (2002 - present) Site #4: Childs River (2002 - present)

Parameters Collected:

- Water Temperature
- Turbidity
- pH
- Water Depth
- Specific Conductivity/Salinity
- Dissolved Oxygen (mg/L and %)
- Nutrients (NH4, NO2/3, PO4, SiO4, DON, TN)
- Chlorophyll a

BayWatchers - Temperature

Sites 1-5, Years 1994-2011

Note: Did not include years 2012-2014 because of sampling frequency change in fall season

Linear Regression by season

Winter: $R^2 = 0.001$, F = 0.267, p = 0.605

Spring: $R^2 = 0.011$, F = 6.081, p = 0.014

Rate of change: 0.09°C/yr (4° F over 20 years)

Summer: $R^2 = 0.009$, F = 9.903, p = 0.002

Rate of change: -0.02°C/yr (-1° F over 20 years)

Fall: $R^2 = 0.015$, F = 11.274, p = 0.001

Rate of change: 0.16°C/yr (6°F over 20 years)

Baywatchers - Dissolved Oxygen

Sites 1-5, Years 1994-2014

Linear Regressions (growing season only)

June: $R^2 = 0.035$, F = 13.870, p = 0.000

Rate of change: -0.6% per year (12% over 20 years)

Jul/Aug: $R^2 = 0.039$, F = 32.518, p = 0.000

Rate of change: -0.7% per year (14% over 20 years)

September: $R^2 = 0.054$, F = 20.709, p = 0.000

Rate of change: -0.9% per year (18% over 20 years)

Baywatchers Chlorophyll-a (September Only)

Linear Regression

September Only: $R^2 = 0.133$, N = 28, F = 4.148, p = 0.052

Rates of change:

Childs River = $1 \mu g/L$ per year

Quashnet River = 2 μg/L per year

April showed significance of p = 0.063, with negative change rate (CHL going down in April over the years)

Buzzards Bay, MA

Buzzards Bay Coalition's Baywatchers

- •The Baywatchers Program began in 1992.
- Volunteers measure water quality indicators from May to September.
- •Over 1600 citizen-scientists!!
- Nutrients, temperature, salinity, dissolved oxygen

Over 330 places have been sampled!!!

Long-term trends, spatial patterns in water quality

Long-term trends, spatial patterns in water quality

Nutrient oops!!

Total Nitrogen (uM)

Total Nitrogen (uM)

Chlorophyll

Chlorophyll

Nitrogen

Dissolved Oxygen

Buzzards Bay Coalition, www.savebuzzardsbay.org

Long-term trends, spatial patterns in water quality

1930

Decadal Trends

Yield of Chla higher in a warmer world

Yield of Chla higher in a warmer

world

No management + changing response

Chlorophyll

Nitrogen

Yield of Chla higher in a warmer world

Management efforts to improve water quality may not look like they have produced positive results, but...

Without those efforts, things may have looked a LOT worse.

Conclusions

- •We are seeing local impacts of climate change here up to 2C (~4F!) warming over several decades
- Water quality indicators suggest declines in water quality in many places of Buzzards and Waquoit Bays
- In Buzzards Bay, Chlorophyll is increasing in more places than nutrients
- •Higher yield of Chla/TN at present Has substantial implications for management in the future

Thanks!

MacArthur Foundation

http://www.whoi.edu/sites/coastal_climate_change_solutions

