

STONEHILL COLLEGE

Is Nitrogen Removal a Shell (or shellfish) Game?

Daniel Rogers Department of Chemistry, Stonehill College drogers2@stonehill.edu

Waquoit Bay National Estuarine Research Reserve Falmouth, MA April 26, 2016

About Me

- How did you get here?
- What are you interested in?
 - Very different environments but similar interaction between life and chemistry.
- The Interplay between Life and Chemistry
 - Nitrogen
 - Estuaries
 - Waquoit groundwater
 - Oysters
- Can we use this information?
 - Modeling work, future studies.



About

Life/Chemistry

STONEHILL COLLEGE

For most of history, man has had to fight nature to survive; in this century he is beginning to realize that, in order to survive, he must protect it.

Jacques Yves Cousteau

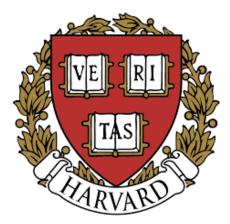
AZQUOTES

Credit:www.azquotes.com

Credit:www.whoi.edu

About

Life/Chemistry


STONEHILL COLLEGE

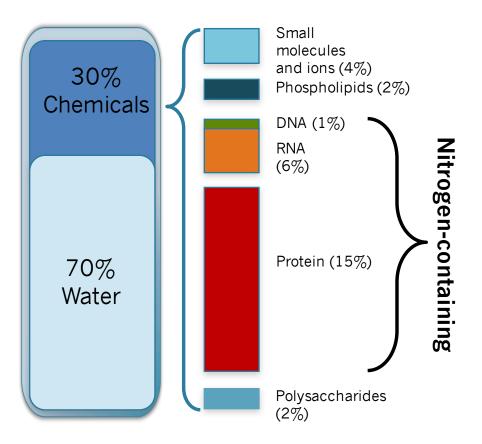
STONEHILL COLLEGE

JOINT PROGRAM IN OCEANOGRAPHY/APPLIED OCEAN SCIENCE & ENGINEERING

Application

About

Life/Chemistry


What is the relationship between biological processes and chemical environment?

- How does chemistry influence life?
- How fast are resources moved in an environment?
- What are the mechanisms involved?
- What signatures of life are consistent between environments?

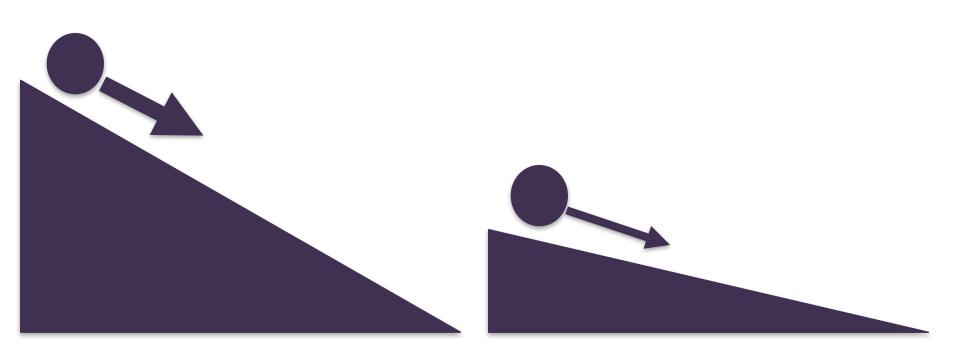
Why do we care about nitrogen?

More than 20% of the cell weight is built with nitrogen.

- One of six elements required for all life (CHONPS).
- Its abundance. Nitrogen is everywhere!
- However, its lack of abundance in a usable form often limits life.
- Humans have gone to great lengths to produce more (anthropogenic) biologically available nitrogen.
- Anthropogenic nitrogen has altered the environment.

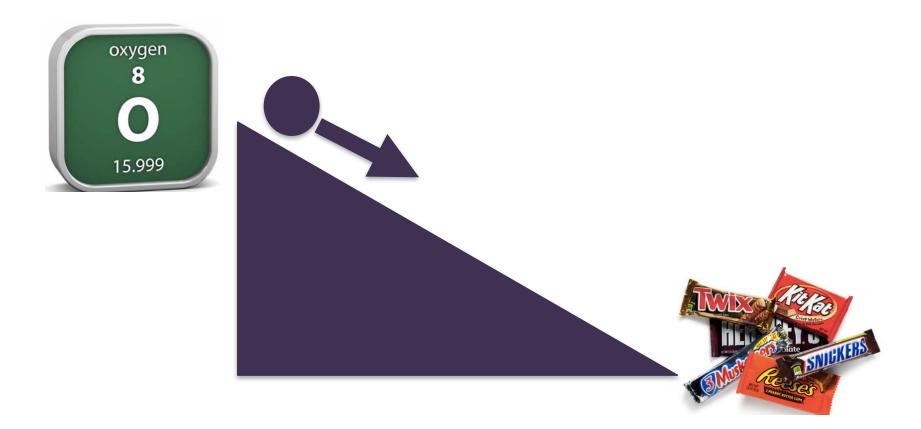
Life drives chemistry / Chemistry drives life

- Life
 - Requires energy source
 - In a race to harvest energy
 - In competition for energy


- Chemistry
 - Moves toward balance
 - giving off energy
 - The more out of balance the more energy will be available
 - Tends to move slowly, rates driven by the degree of difference

Life/Chemistry

Steeper gradient mean more energy


About

Life/Chemistry

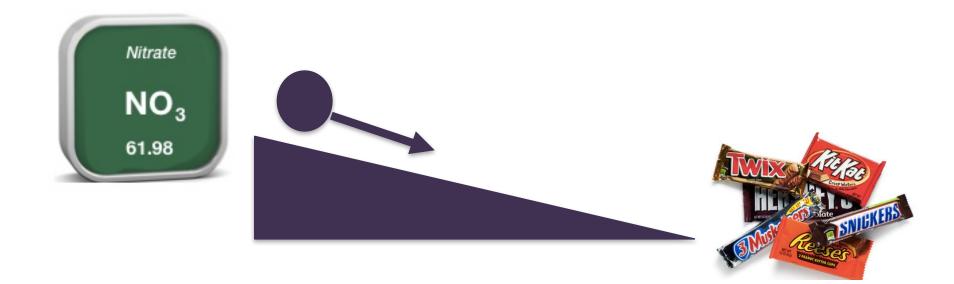
Steeper gradient mean more energy

Life/Chemistry

STONEHILL COLLEGE

/ Chemistry drives life

Credit:www.elephantfacts.com


About

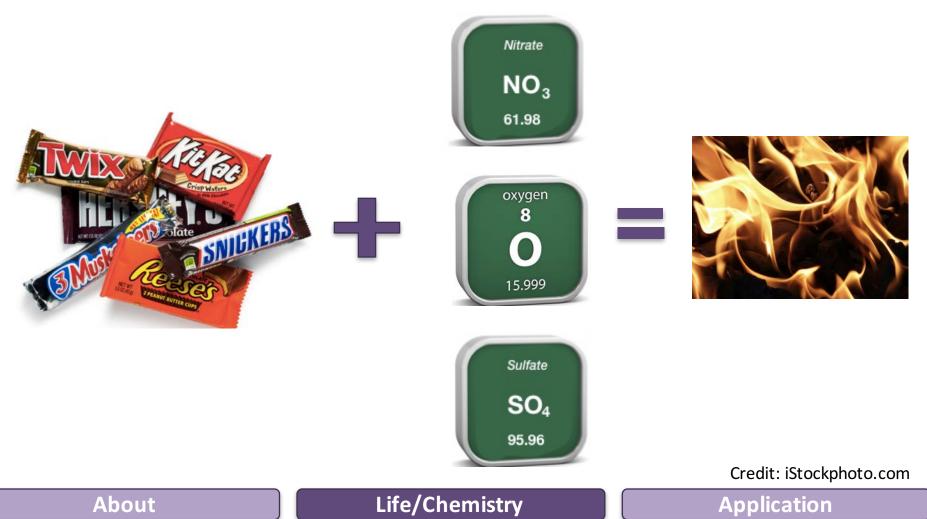
Life/Chemistry

Steeper gradient mean more energy

About

Life/Chemistry

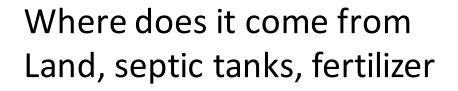
Without oxygen, other chemicals can be used.


Credit: iStockphoto.com

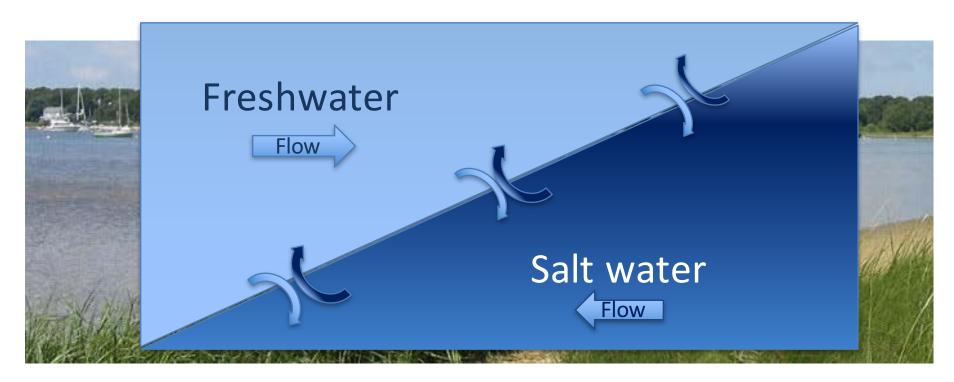
About

Life/Chemistry

Microbes are metabolically diverse.



What else does nitrogen do? Stimulates plant growth


About

Life/Chemistry

Estuaries are environments where a chemical gradient persists: freshwater mixing with sea water.

About

Life/Chemistry

STONEHILL COLLEGE

Estuaries are zones where freshwater and sea water mix.

- Chemically complex lots of energy sources for microbes
- Lots of nutrients for the base of the food chain
- Lots of higher biomass because the base is supported

About

Life/Chemistry

About

Life/Chemistry

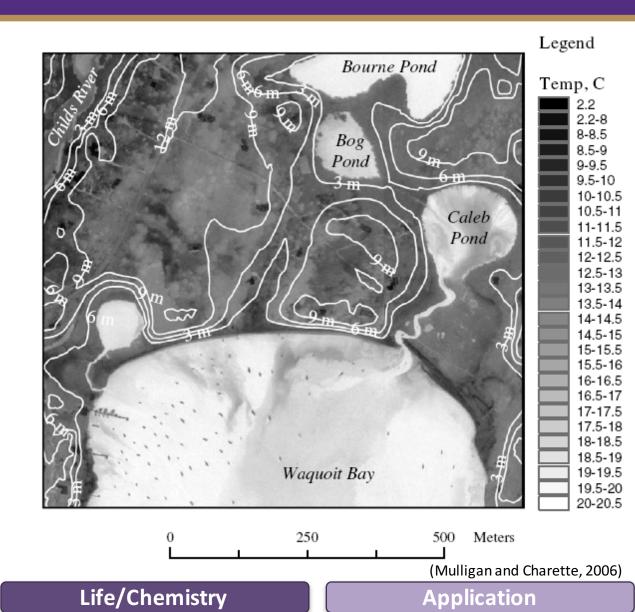
STONEHILL COLLEGE

Too much nitrogen is bad for the health of the coastal ecosystem

Decrease in available oxygen

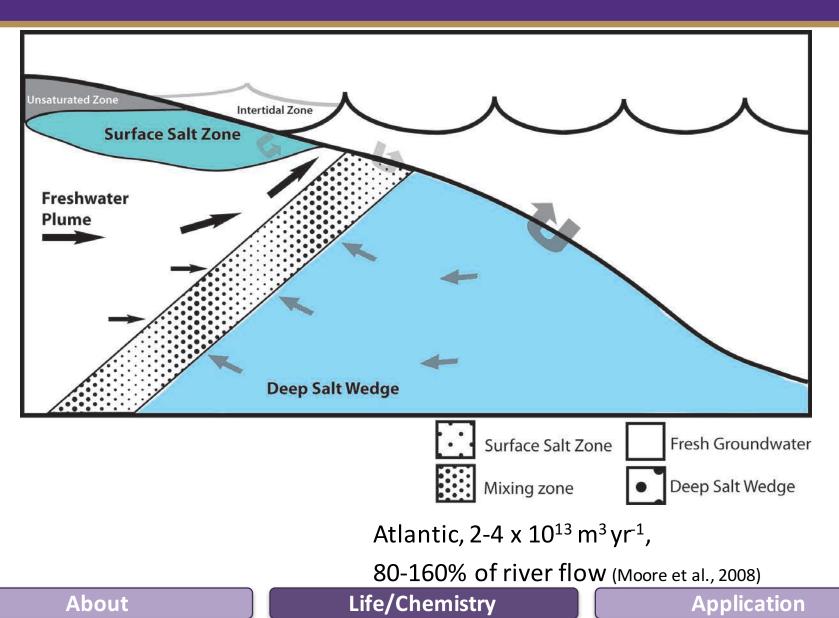
Decreased biodiversity

Detrimental to economics

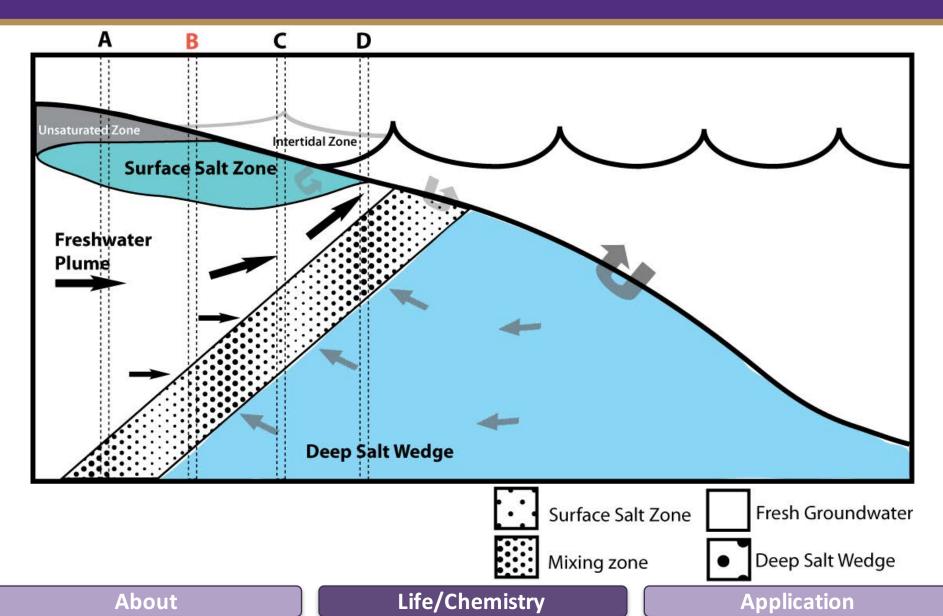

About

Life/Chemistry

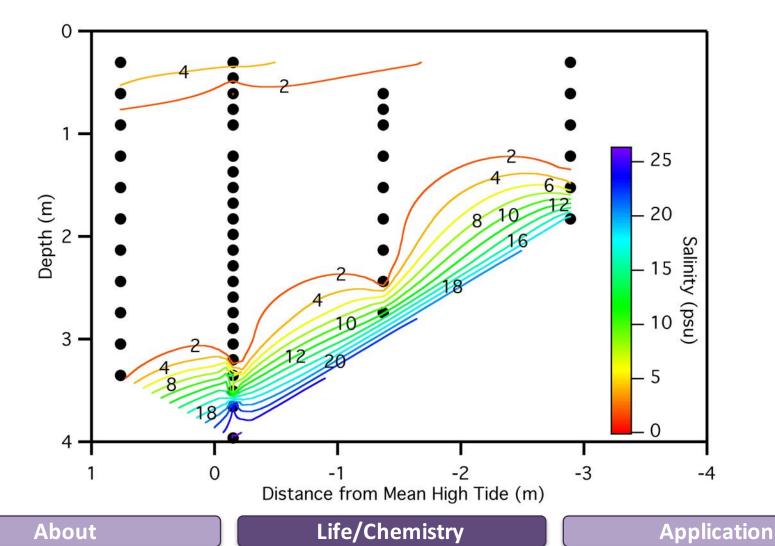
STONEHILL COLLEGE


About half of the freshwater entering Waquoit Bay is groundwater

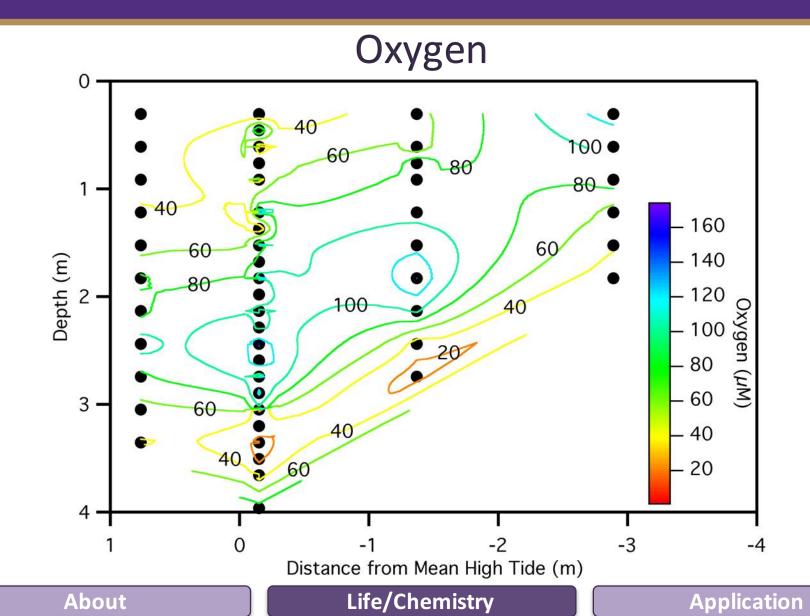
About



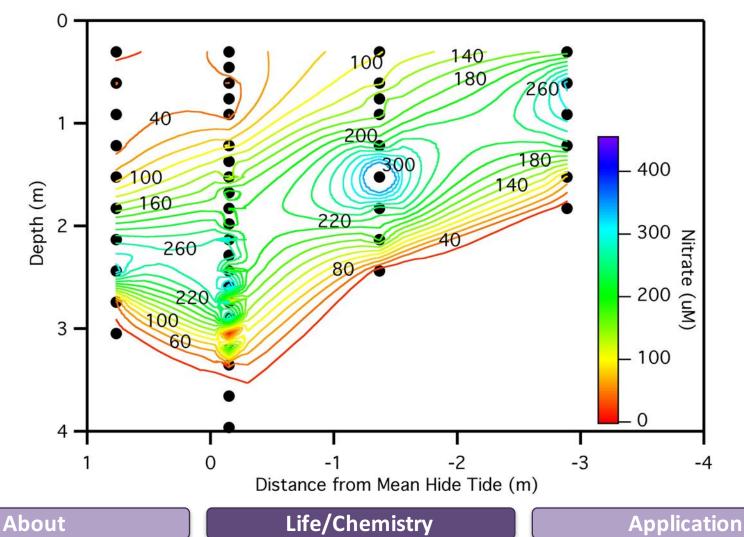
STONEHILL COLLEGE



STONEHILL COLLEGE



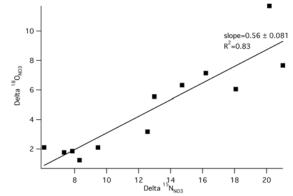
Salinity



STONEHILL COLLEGE

Nitrate

STONEHILL COLLEGE


Collect Sediments

Add tracers

Credit: Thomas Kleindinst, WHOI

Look for N-removal

About

Life/Chemistry

Why low rates of N-removal in ground water?

- Small zone where oxygen is absent
- Relatively short time for the groundwater to move through that zone
- Sediments in this zone are low in food (carbon)

Why Oysters?

- Economically desirable
- Incorporate nitrogen into biomass
 - ~0.5% of dry weight
 - ~12% of dry weight of tissue
- May move a lot of nitrogen and carbon to the sediments

STONEHILL COLLEGE

Credit:Seafood.maryland.gov

About

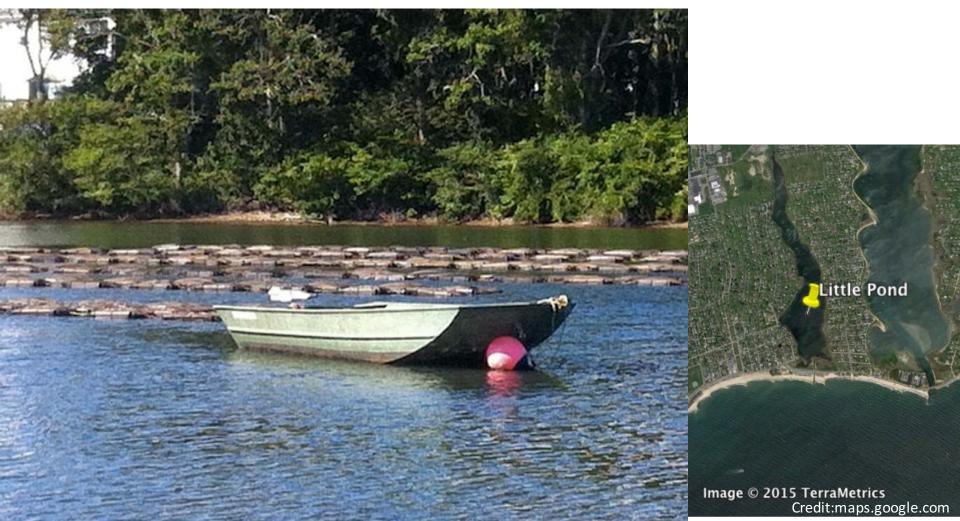
Life/Chemistry

STONEHILL COLLEGE

How valuable are shellfish?

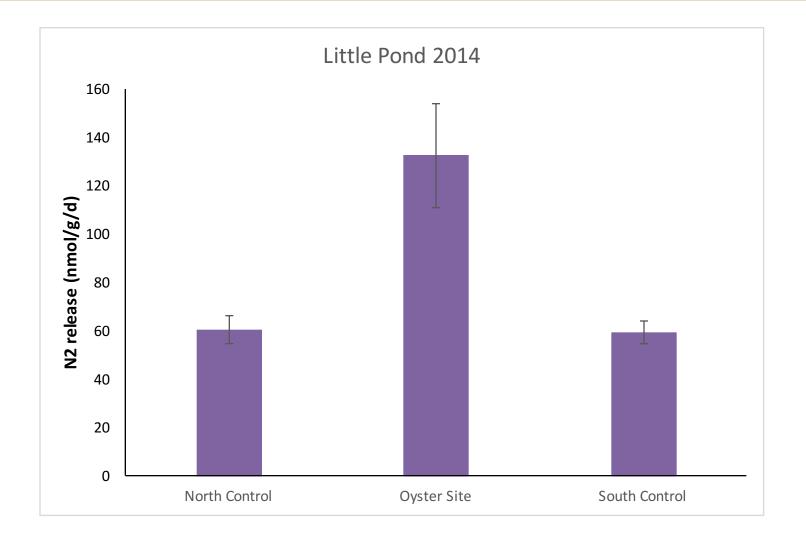
- >\$60M for Barnstable alone in 2013*.
- Shellfish Farming is increasing.
 - ~250 growers on Cape Cod*.
- Little Pond, Falmouth
- Snug Harbor, West Falmouth
- Wellfleet Harbor, Wellfleet
- Floating Bags (3 m), benthic cages or a combination

(*Josh Reitsma and Diane Murphy, Cape Cod Cooperative Extension)


About

Life/Chemistry

Little Pond



STONEHILL COLLEGE

STONEHILL COLLEGE

About

Life/Chemistry

STONEHILL COLLEGE

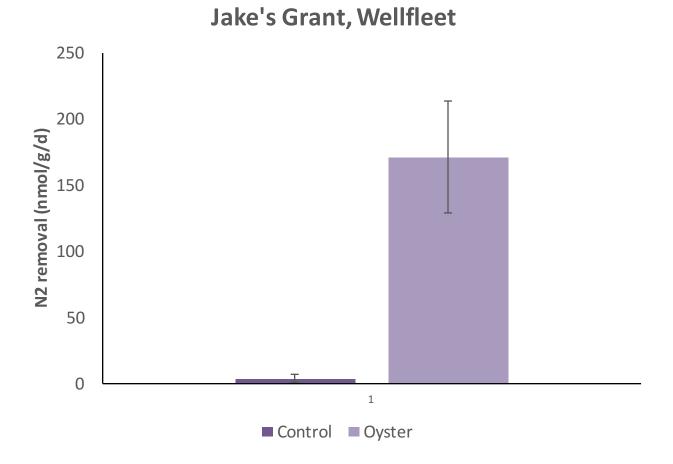
Wellfleet Nitrogen Removal

About

N2 release (nmol/g/d)

0

Core1


Life/Chemistry

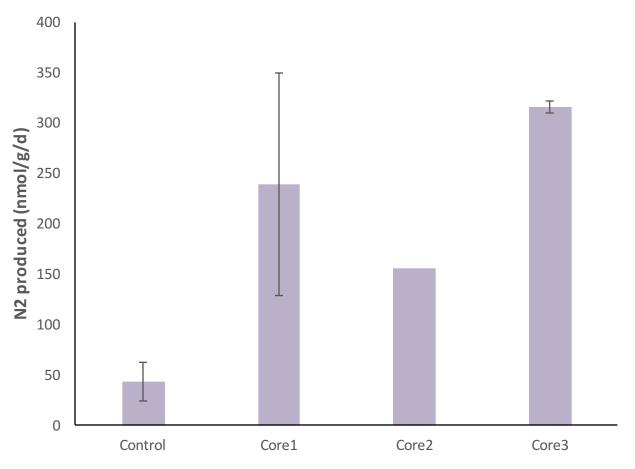
Core2

Application

Core3

About

Life/Chemistry

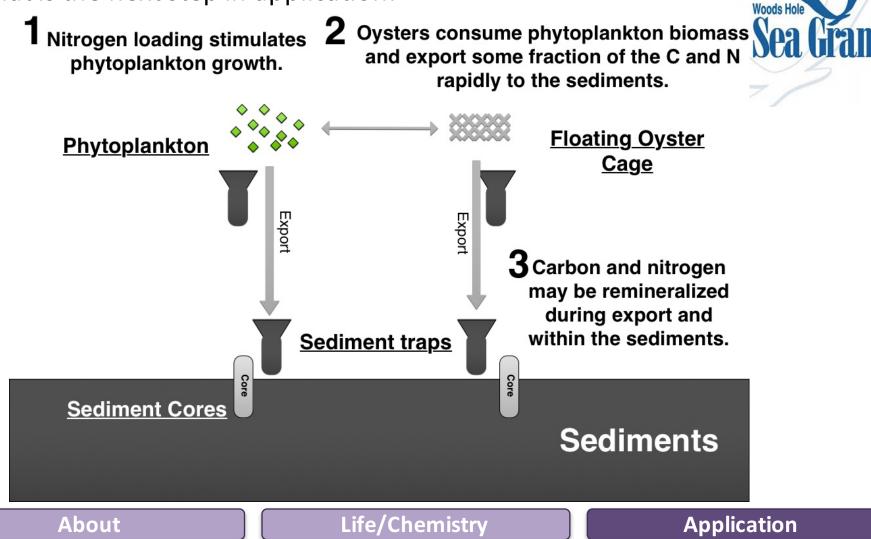

STONEHILL COLLEGE

Snug Harbor, West Falmouth

West Falmouth

About

Life/Chemistry



Conclusions:

- Oyster activity does seem to increase removal of nitrogen from the underlying sediments.
 - increase may be more significant in well ventilated environments
- Increase in nitrogen is relatively well coordinated with the presence of the oysters (data not shown)
- Different oyster farming strategies may also influence impact on nitrogen removal

What is the next step in application:

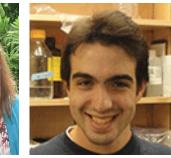
STONEHILL COLLEGE

Model the movement of nitrogen to the sediment, given a particular oyster biomass in Little Pond.

Drive model with oyster biomass, sedimentary C and N content

Extrapolate to similar estuaries on Cape and test the model.

Distribute model to towns to help management of coastal waters


<mark>ອຽວວ</mark> 🗖 🖬 ທາປ ຈ								rogers_2015Aug20-LP-Well-Version2											Q - Search Sheet			
Home	a second of the local data	Page Layou	rt Form	ulas Data	Revi	iew V	iew													2		<u>.</u> •
P ·	Copy *	Arial	- 10	- A- A-			æ.	() ()	Nrap Text		Numbe	ć			- I	2.	2.	am - 4	=× .	AutoSum Fill	°° 2₽	•
aste	Secopy Format	BI	2 · _ ·	<u>A</u> · <u>A</u> ·	-	5 3	•1 •1		Merge & C	enter 🗉	s •	%)	• 0 00 • 0	Conditi	ional For	rmat C Table St	cell yles	insert (belete Form		Sort & Filter	
91	\$ × ~	fx =K19	1*K\$47																			
A		8	С	D	ε	.e.	0	н	jt.	3	ĸ	L	M	N	0	Ρ.	Q	R	8	T	U	v
stop/st	uit -		46-10	6/20/07 14:28			8.81E-11					lemperatu				LN 1/100			941	NZIA	02/Ar	
			0.14	6/20/07 14:29	2.666-07	1.65E-09	2.81E-11	7.40E-09				10		2.88	0.35			Contraction of the				
				6/20/07 14:32 6/20/07 14:33	2.56E-07 2.56E-07	1.65E-09	2.78E-11	7.40E-09 7.40E-09				12	18	2.85	0.35	1.0478	549.31	300.601	14,7053	37.364	20.442	
					2.000.01			1.000					INZI	531.00		M	13.91					
										Bath (volts)				Bath (uM)								
					Avg_N2	Avg_29	Avg 30	Avg_Ar		Arg N2	Avg_20	AVIZ 30	Ng.N	AND NO I	Avg_28	Aug 30	NEN	NZIAr	29/28	30/28	Vol (L) of se	erum bottle
			Bath		1.91E-07		2.74E-11			1.928-07	1.30E-09	2.596-11	8.52E-09	\$45.29	4.01	0.01	1 14.65	37.5	0.007382749	1.00736E-08	0.037	
					1.916-07	1.29E-09	2.696-11		Minut				7.848-09		-							assume 30 r
									Sample ID					Avg_N2	Avg_29	Avg 30	Ave.Ar	NZIAF	TRANSCORNEL	excess (29N2)/(28N2)	(2004)21M	
	Weiffeet		110		1.878-07	1,108-09	2.018-10	4.478-09					4.488-00	444.D	37	0.506			0.0003	0.0001		
					1.57E-07	1.198-09	2.028-10	4.488-09														
	Welfeet		173		1.488-07	9.998-10	2.258-11	4.206-09	173	1.486-07	0.09E-10	2.246-11	4,216-00	419.8	3.1	0.064	11.2	37.9	0.0074	0.0000	0.0024	0.00
					1.48E-07	1.006-00	2.22E-11	4.216-09														
	Welfleet		179		1.56E-CT	1.06E-09	2.208-11	4.37E-09	179	1.56E-07	1.06E-00	2.20E-11	4.37E-00	443.3	33	0.065	11.6	38.5	0.0074	0.0001	0.0248	0.000
	Welfort		161		1.56E-07	1.06E-09 7.65E-10	2.218-11	4.37E-00 3.08E-00		1000.00		*	3 CRE-CO	291.6	24	0.374		36.0	0.0081	0.000	0.0100	0.00
			101		1.035-07	7.658-10	1.262-10	3.085-09		T. Goldenor	T. BORNING		, succes		1		1.57				0.2100	0.00
	Weiffeet		165		1.586-57	1.185-09	1.81E-10	4.505-09	165	1.585-07	1.175-00	1.805-10	4.505-00	449.9	3.6	0.534	12.0	38.0	0.0081	0.0007	0.0213	0.00
					1.58E-07	1.17E-09	1.805-10	4.508-09														
	Welfeet		163		1 205-07	9.39E-10	2.096-10	3.438-09	163	1.205-07	9.396-10	2.000-10	3.42E-09	342.1	2.9	0.621	9.5	38.0	0.0065	0.0011	0.3851	0.00
					1 208-07	9.38E-10	2.106-10	3.428-09														
	Welfleet		171		1.51E-07			4.305-09	171	1.51E-07	1.478-00	5.73E-10	4.31E-09	428.0	4.6	1.600	11.4	38.0	0.0108	0.0033	1,4082	0.01
	Welfeet		175		1.510-07			4.46E-00	175	1.605-07	1005-00	2 238-11	4.485-00	454.0	33	0.000	11.0	38.4	0.0074	0.0000	0.0010	0.00
					1.605-07	1.08E-09	2.202-11	4.482.00				0	1						0.0014		2.0010	
	Welfiet		177		1.60E-07	1.08E-09	2.19E-11	4.53E-09	177	1.605-07	1.08E-00	2.19E-11	4.53E-09	453.7	3.3	0.065	12.0	38.0	0.0074	0.0000	-0.0008	0.000
					1.605-07			4.53E-09		10 10												
			Bath		1.91E-07	1.29E-09		5.48E-09	Bath	1.91E-07	1.29E-00	2.71E-11	5.47E-09	541.5	4,0	0.080	14.5	37.5	0.0074	0.0000	-0.0004	0.00
	101110-00		181		1.91E-07	1.29E-09	2.69E-11	5.47E-09 4.55E-09					4.55E-00	480.5	1.100				0.0074		0.0011	
	Welfiet		101		1.62E-07			4.556-09	-01	1020-07	1.100-00	2.405-11	4.500-00	400.5	3.4	0.071	12.1	38.4	0.0074	0.0000	0.0011	0.000
	Welfiet		183		1.52E-07	1.03E-09	2.27E-11	4.32E-09	183	1.525-07	1.00E-00	227E-11	4.325-09	431.4	32	0.067	11.5	37.9	0.0074	0.0000	0.0185	0.000
					1.526-07	1.03E-09	2.27E-11	4.32E-09		C.C. S. C. S.	1		and the second second						10. X00.020	\$2007		1.000
1	Moltinet		167		1.646.07		8 916.40	1.615,210					4.815.00	196.7	.43		12.9		0.0114	0.0047	1.0710	(1.114)
	Graphs	processing	solubility	table RU	IN	Notes	Jako's G	rant V	venneet	Welffee	I DNF	West Fa	Imouth DN	e Jake	's DNF	+						

Acknowledgements:

Charette Lab – WHOI Casciotti Lab – WHOI/Stanford Funding Agencies:

