What Can Tea Bags in Salt Marshes Tell Us About Climate Change?

Acknowledgements

Funding:

NOAA/National Estuarine Research Reserve System Science Collaborative (BWM1 and BWM2)

Collaborators:

Faming Wang, Kevin Kroeger, Omar Abdul-Aziz, Serena Moseman-Valtierra,, Meagan Gonneea, Kate Morkeski, Jordan Mora, Joanna Carey, Tonna-Marie Surgeon-Rogers, James Rassman, Chris Weidman

Global carbon cycling **▲2.4** Unit: Billion ton 4 55 60 Pg 120 5.4 Vegetation Fossil fuel 88 90 Soil Surface water Deep water Speed of exchange processes Very fast (less than 1 year) Sediment Fast (1 to 10 years) Slow (10 to 100 years) Very slow (more than 100 years) IPCC, 2001

Carbon-climate-ecosystems-Earth system

Coastal blue carbon

Photosynthesis: $6CO_2 + 6H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2$ Respiration : $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + heat$ Calcification: $Ca^{2+} + 2HCO_3^- \leftrightarrow CaCO_3 + H_2O + CO_2$

Tang et al. 2018.

Therefore,

- to understand and predict climate change, we need to understand the carbon cycle;
- to mitigate climate change, we need to increase carbon uptake (the negative carbon emissions), where coastal salt marsh plays an important role.

Negative Emissions Technologies (NET)

The National Academies of

SCIENCES • ENGINEERING • MEDICINE

Developing a Research Agenda for Carbon Dioxide Removal and Reliable Sequestration http://nas-sites.org/dels/studies/cdr/

Carbon cycling components

Tang et al. Unpublished

In-situ GHG
Chamber flux
measurement for
salt marsh

Use ²¹⁰Pb to date sediment cores (Gonneea et al.)

TEACOMPOSITION - GLOBAL LITTER DECOMPOSITION STUDY

Tea decomposition experiment: to understand the decomposition rate of organic carbon

Djukic et al. 2018

Djukic et al. 2018

Using Cameras to record leaf phenology

Tang et al. 2016 Ecosphere

Leaf phenology vs. carbon (i.e. GPP)

CO₂ and CH₄ fluxes in the pristine site (gC m⁻²y⁻¹)

Tang et al. unpublished

Case study: Herring River wetland restoration project

C from different ecosystems

Salt marsh: 100-200 gC m⁻²y⁻¹)

Carbon credit for salt marsh restoration

Blue Carbon Credit

Carbon credit =

Carbon storage after human intervention - Carbon storage baseline

Conclusions

- We use gas analyzers, cameras, and tea bag experiments to understand the carbon cycle.
- We found that the coastal wetland is a significant carbon sink (blue carbon).
- Restoration increased carbon sequestration and decreased CH₄ fluxes.

