Increasing Salt Marsh Resilience in the Face of SLR – Investigating Thin Layer Deposition (Sediment Augmentation) as a

Coastal Wetlands on the Frontlines

Cape Cod National Seashore

Hurricane Sandy Resilience Projects by USFWS

Waquoit Bay NERR Research

Has rapid demise of salt marshes gotten you down?

Trying to pull yourself up by your own bootstraps?

http://maineoceanlover.blogspot.com/2014/10/mudflat-moon-snail-mania.html

Trying new tools to get unstuck?

Sometimes you are in too deep

And you just want to DO something to help ailing marshesAnd yourself

http://farm1.staticflickr.com/163/432541049_b232a8f755.jpg

Examples

- RI- John H. Chafee NWR and Ninigret
 Pond (2016), Sachuest Point NWR (2015)
- NY- Big Egg (2003), Elders East (2006),
 Elders West (2010), Yellow Bar (2012),
 Black Wall and Rulers Bar (2013)
- NJ- Edwin B. Forsythe NWR
- DE- Pepper Creek Marsh (2013), Prime Hook NWR (2016)
- MD- Blackwater NWR (2003)

Experimental Scale: Plum Island, MA pilot project

Restoration scale: John H. Chafee NWR, Narrow River TLP test plot

May 8, 2015

Sept 10, 2015

Credit: Jennifer White, USFWS

Sediment Augmentation Costs

- Cost per acre: max \$430k, min \$5,000
- Coastal RI
 - ~\$81,000 (Caitlin Chafee, RI CMRC)
- Jamaica Bay, NY projects
 - ~\$100-430,000 (J. Turek, NOAA Restoration Center)
- Seal Beach, CA 10 acre project
 - ~\$236,000
- Pepper Creek, DE, 25 acres
 - ~\$5,000
- Prime Hook NWR, DE, 4,000 acres
 - ~\$9,500

Design Process

STEP 3: Specifying sediment containment measures

Criteria used:

- Topographic surveys
 - Existing elevation
 - Location of tidal creeks
- Target elevations

*Wished we had modelled drainage pathways on the marsh within each area to know where to beef up containment and where not to

Avalon NJ Restoration, Source: Jackie Jahn, GreenVest

Using Technology and Emerging Practices to Build Tidal Marsh Habitat Resiliency

NE Regional Ocean Council and North Atlantic Landscape Conservation Cooperative Workshop

Thin Layer Placement Take Home Points

- Develop criteria to help coastal managers decide if/when thin layer deposition is an option

- Guidance re: appropriate thickness of sediment application across a restoration site

- Monitoring protocols are needed

Thin-layer sediment placement EVALUATING AN ADAPTION STRATEGY TO ENHANCE COASTAL MARSH RESILIENCE

A project funded by the National Estuarine Research Reserve Science Collaborative

NEERS Thin Layer Project Leads

Kerstin Wasson Elkhorn Slough NERR California

Kenny Raposa Narragansett Bay NERR Rhode Island

PROJECT OBJECTIVES

Determine conditions where sediment addition is an effective strategy to enhance marsh resilience

Consistent comparisons among 8 marshesCompare effect in high vs. low marsh

•Compare thinner vs. thicker addition layer

TWO MARSH ELEVATIONS

•Most TLP focuses on saving lowest drowning marsh

•We are interested in TLP across the entire marsh landscape, including as a strategy for enhancing valued high marsh communities

FRAMES TO RETAIN SEDIMENT •Use wooden frame to ensure sediment is not lost from plots

national estuarine research reserve system

Sage Lot Pond, Mashpee, MA

TWO SEDIMENT THICKNESSES

•7 cm vs. 14 cm sediment addition

•Latter likely to kill vegetation present, but give opportunity for colonization to higher elevation appropriate for target community

HIGH MARSH SITE SELECTION

- •Just below elevation where high marsh species dominate
- •Areas that have converted from valued or rare high marsh communities to low marsh communities
- •Goal of TLP here is to increase proportion of high vs. low marsh plant species

Experimental plot before

Experimental plot after

Sage Lot Pond high marsh study site

LOW MARSH SITE SELECTION

- •Near lower tolerance limit of marsh vegetation at each site
- •Areas with 0-50% cover, ideally with recent loss due to drowning
- •Goal of TLP here is to increase cover by low marsh vegetation

Experimental plot before

Experimental plot after

Sage Lot Pond low marsh study site

GREENHOUSE EXPERIMENT

•Complementary greenhouse experiment by Elizabeth Watson & students will shed light on plant growth differences across sediment types and biochar concentrations

OUTCOMES..... Answers manager's questions: NE Regional Ocean Council and North Atlantic Landscape Conservation Cooperative Workshop

•Improved site selection for future sediment augmentation/TLP projects

•More accurate predictions about effectiveness of future TLP projects under different conditions (based on results from 8 sites)

•Standardized future monitoring across TLP projects

Wave impacts on marsh edge

