Misquamicut Wiped Out; Napatree Point Gone; 50 Dead; Scores Missing

Westerly Paralyzed by Tropisal Hurricane; Cottages at Chatlestown Beach and Qzonochontaug W a shed Away; 4 Dead, 4 Missing In Stonington

Headline from the Fairhaven Star
Thursday, September 22 ${ }^{\text {nd }}, 1938$

The Realities of Hurricanes on Cape Cod

David R. Vallee
Hydrologist-in-Charge
NOAA/NWS/Northeast River Forecast Center

Classic Hazards:

Damaging winds, flooding rains and devastating storm surge

Hurricane force winds destroys the roof of the Bell Company, $=$
Woonsocket, RI. Photo courtesy of the Providence Journal

Destruction from storm surge along Route A, Narragansett, R: Photo courtesy of the Providence Journal

Warwick, RI. Photo courtesy of the Providence Journal.

Common Characteristics

- Every system is undergoing a transition from pure Tropical to "Extra-tropical" (i.e.: winter storm-like) upon approach
- Dramatic Jet Stream interactions
- Rapid acceleration up the coast
- Heavy rainfall usually focused along and west of the storm track
- High winds focused east of the track
- Storm surges focused east of the track with the greatest surge depths occurring on the upper reaches of south facing bays and inlets

Rapid Acceleration Northward

- Average forward motion for storms impacting New England: 33 mph
- The Great New England Hurricane of 1938 made the trip from Cape Hatteras, NC to Providence, RI in 8 hours!
- Forward speed at landfall was at least $51 \mathrm{mph} / 82 \mathrm{~km}-\mathrm{hr}$ and estimated as high as $60 \mathrm{mph} / 97$ km-hr

Storm	Forward Motion
Atlantic Hurricane of 1944	29 mph
Carol - August 1954	35 mph
Edna - September 1954	46 mph
Diane - August 1955	15 mph
Donna - September 1960	24 mph
Gloria - September 1985	45 mph
Bob - August 1991	32 mph
Irene - August 2011	20 mph

Jet Stream Interactions

- Interactions with the Polar Jet Streams foster the rapid acceleration northward and northeastward
- Anomalous wintertime looking jet stream pattern
- These same interactions also lead to remarkable rainfall production in spite of the rapid forward motion
- Complex interactions with synoptic scale cold fronts
- Enhancements due to the development of coastal fronts
- Onshore flow producing enhanced lift due to the topography of the Northeast

Anything with a name in the Bahamas is
New England's Business!

Heavy Rainfall Characteristics

- Two types of distributions
- Right of Track
- Left of Track
- Some systems "changed phase" as they turned and accelerated northeastward
- Nearly $1 / 2$ of all our storms produced small stream/river flooding in the region!
- Average rainfall 6-8 inches
- Blockbuster rains with some slower movers
- Diane ' 1955 (15 -20 inches)
- Irene 2011 (10-16 inches)

Rainfall analyses for Carol \& Floyd

Historical Perspective

Connie \& Diane's Widespread Flooding/Flash Flooding

City of Woonsocket, RI - Diane 1955
Flooded downtown "social/business" district

Hurricane Diane - 1955

Trene - Devastated eastern NY and western NE

Flooding on Conway St., Buckland, MA
Photo: J. Brown

Behavior of the wind field

- Short duration of sustained tropical storm and hurricane force winds
- Tropical Storm = 12 hours
- Hurricane force = 3-6 hours
- High winds focused east of the track enhanced by the acceleration toward New England
- Acceleration dramatically adds to gust potential
- In 1938 the Blue Hill Observatory, Milton, MA elevation 629 ft recorded
- 5 minute sustained wind of 121 mph
- Peak instantaneous gust of 186 mph
- Other notable wind speeds from Hurricanes in the region
- Hurricane Carol - T.F. Green Airport recorded 90 mph sustained wind with a peak gust of 105 mph
- Hurricane Donna - peak wind gust 130 mph on Block Island
- Hurricane Bob - peak wind gusts of 120 to 125 mph on Cape Cod

High Winds

- Radius of maximum winds (RMW) varied considerably
- As small as 25 mi in Hurricane Bob 1991
- As large as 50 nm in the Great New England Hurricane 1938
- Region is not built for strong southeast gales
- Lowest frequency of occurrence is southeast
- Prevailing winds northeast, southwest and northwest
- Vegetation not built for southeast

HUPRICANE BOB ISOTACHS

Irene’s Winds vs. Sandy's Winds

* Irene's winds were predominantly from the southeast
- Sandy's were mostly northeast except immediate south coast late Monday afternoon - Difference between widespread damage vs. scattered shorter duration damage

1938 Wind damage

Similar to F1-F3 tornado

Degree of wind damage as a result of the 1938 Great New England Hurricane, as classified by the Fulita Scale (Source: Boose et al., 2001)

Tremendous wind damage in Windham, Connecticut following 1938

Deadly Storm Surge

- It can kill you \& destroy coastal communities
$>50 \%$ of U.S. economic productivity - coast!
- Big population increase on our coast since ' 54

Bristol, MA

Barnstable, MA

Examining Storm Surge

STORM SURGE is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide.

STORM TIDE is the water level rise during a storm due to the combination of storm surge and the astronomical tide

Storm Surge Characteristics

- Tremendous storm surges on south facing bays
- Most significant "surge" occurs within one hour of landfall
- Wave run-up causes minor coastal flooding to commence ~ 6 hours before the eye arrives
- In Sandy - 2012 it was more than 18 hours!
- Surges of 12 to 15 feet have been observed
- Potential for 20-25 foot surges from Cat 3 storm exists for Buzzard's Bay, Massachusetts and the lower portions of Penobscot Bay in Maine
- 10-14 feet for the south side of Cape Cod
- 8 to 12 feet on the Cape Cod Bay side of Wellfleet \& Truro

Angle of Approach and Forward Motion

- Small changes greatly affect surge generation
- Forward motion
- Angle of approach
- RMW significantly change where maximum surge occurs
- South coast will typically see less surge but significantly greater wave damage
- Upper bays and tidal rivers will see greater surge heights due to funneling but less wave related damage

'HURRICANE BOB AUGUST 19, 1991
STORM SURGE HEIGHTS IN FEET

R © \mathbb{A} Q

For Cape Cod Bay:

Max surge occurs after the center passes!

- Simulation for Hurricane Edna, 1954
- Note the surge of ~ 10 feet in Wellfleet Harbor occurs nearly 1.5 hours after the eye reaches the south side of the cape!

Flavors of Surge Damage

Crescent Beach, MA - Before Hurricane Carol

Flavors of Surge Damage

Wave and Surge Damage from Sandy along Atlantic Avenue, Westerly RI

The Great New England-Hurricane

of 1938 had it all!

Tremendous storm surge damage at the mouth of the Connecticut River, at Old Lyme

Devastating storm surge damage flattens the beach-side village of Island Park, Portsmouth, RI

Route 1A - Scenic in Narragansett, RI the day after the Great New England Hurricane of 1938. Note the today destruction of the sea wall and roadway

Powerful waves breaking over the sea wall at the U.S. Fishery Building during the 1938 Hurricane in Woods Hole, MA

Let's take a trip to the Menauhant section of Falmouth, Massachusetts

Wondering what this might look like during an actual Storm Surge???

Hurricane Bob's Six Foot Storm Surge!

So What's The Real Potential?

As it is today...

So What's The Real Potential?

Upper Buzzards Bay Worst Case:
 NNE Cat 3 moving at 60 mph

SLOSH Display

$\square \square$
File Display Change-Basin Select-Storm Animate Tides Download Help
Basin: Proridence/Boston <p12>
Storm: Dir nne: Cat 3: 60 mph High (5 ft) Tide

SLOSH Model Storm Tide MEOW Narragansett/Buzzard's Bay Basins Simulated Cat 3, moving NNE at 60 mph

Parkwood Beach, Wareham, MA "My Miami of The North!"

Upper Buzzards Bay Worst Case:

Potential Inundation in Wareham, MA

Tremendous potential for disaster

Swifts - Pinehurst - Parkwood today

Summary

- New England Tropical Cyclones have a particular behavior of their own
- Driven by interaction with the westerlies
- Desire to become Extra-tropical
- Potential for widespread severe wind damage
- Potential for devastating storm surges
- 20 feet or more in the upper Sakonnet River and upper Buzzards Bay
- Explosive Jet interaction, coastal frontogenesis, and orographic enhancement can result in tremendous rainfall and flooding
- Acceleratory nature and the arrival of heavy rainfall well in advance of the storm:
- Makes it a necessity to prepare well in advance

The Realities of Hurricanes

on Cape Cod

Headline from the Fairhaven Star Thursday, September 22 ${ }^{\text {nd }}, 1938$

David R. Vallee
Hydrologist-in-Charge
NOAA/NWS/Northeast River Forecast Center

