Waquoit Bay Research Publications – A comprehensive list of the ~175 peer-reviewed research publications for work conducted partially or wholly within Waquoit Bay Reserve is maintained by our Research Department. The list below is chronological and covers only the last three years. If you have additions for this list, please contact the Research Coordinator.


Kristin Byrd, L. Ballanti, N. Thomas, D. Nguyen, J. R Holquist, M. Simard, Lisamarie Windham-Myers. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS Journal of Photogrammetry and Remote Sensing 139:255-271


Crosby, S.C., Angermeyer, A., Adler, J.M., Bertness, M. D., Deegan, L.A., Sibinga, N., & Leslie, H.M. (2017). Spartina alterniflora Biomass Allocation and Temperature: Implications for Salt Marsh Persistence with Sea-Level Rise. Estuaries and Coasts, 40(1), 213-223. http://link.springer.com/article/10.1007/s12237-016-0142-9


Angermeyer, A., Crosby, S.C., & Huber, J.A. (2016). Decoupled distance–decay patterns between dsrA and 16S rRNA genes among salt marsh sulfate‐reducing bacteria. Environmental Microbiology, 18(1), 75-86. http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.12821/full

Bay, C.C. (2016) Potential Effects of Sea-Level Rise on the Depth to Saturated Sediments of the Sagamore and Monomoy Flow Lenses on Cape Cod, Massachusetts. https://pubs.usgs.gov/sir/2016/5058/sir20165058.pdf

Brannon, E. Q., Moseman-Valtierra, S. M., Rella, C.W., Martin, R.M., Chen, X. and Tang, J. (2016), Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes. Limnol. Oceanogr. Methods, 14: 466–476. doi:10.1002/lom3.10105. http://onlinelibrary.wiley.com/doi/10.1002/lom3.10105/full

Chen, H., Hagerty, S., Crotty, S.M., & Bertness, M.D. (2016). Direct and indirect trophic effects of predator depletion on basal trophic levels. Ecology, 97(2), 338-346. http://onlinelibrary.wiley.com/doi/10.1890/15-0900.1/full

Foster, S.Q., & Fulweiler, R.W. (2016).Sediment nitrous oxide fluxes are dominated by uptake in a temperate estuary. Frontiers in Marine Science, 3, 40. http://journal.frontiersin.org/article/10.3389/fmars.2016.00040/full

Maio, C.V., Donnelly, J.P., Sullivan, R., Madsen, S.M., Weidman, C.R., Gontz, A.M., & Sheremet, V.A. (2016). Sediment dynamics and hydrographic conditions during storm passage, Waquoit Bay, Massachusetts. Marine Geology, 381, 67-86. http://www.sciencedirect.com/science/article/pii/S0025322716301438

Manning, C.C., Stanley, R.H., & Lott III, D.E. (2016). Continuous measurements of dissolved Ne, Ar, Kr, and Xe ratios with a field-deployable gas equilibration mass spectrometer. Analytical chemistry, 88(6), 3040-3048. http://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b03102

Moseman‐Valtierra, S., Abdul‐Aziz, O. I., Tang, J., Ishtiaq, K. S., Morkeski, K., Mora, J., & Carey, J. (2016). Carbon dioxide fluxes reflect plant zonation and belowground biomass in a coastal marsh. Ecosphere, 7(11). http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1560/full

Newell, S. E., Pritchard, K. R., Foster, S. Q., & Fulweiler, R. W. (2016). Molecular evidence for sediment nitrogen fixation in a temperate New England estuary. PeerJ, 4, e1615. https://peerj.com/articles/1615/

Newell, S. E., McCarthy, M. J., Gardner, W. S., & Fulweiler, R. W. (2016). Sediment Nitrogen Fixation: a Call for Re-evaluating Coastal N Budgets. Estuaries and Coasts, 39(6), 1626-1638. http://link.springer.com/article/10.1007/s12237-016-0116-y

Price, A. M., Pospelova, V., Coffin, M. R., Latimer, J. S., & Chmura, G. L. (2016). Biogeography of dinoflagellate cysts in northwest Atlantic estuaries. Ecology and Evolution, 6(16), 5648-5662. http://onlinelibrary.wiley.com/doi/10.1002/ece3.2262/full

Raposa, K. B., et al. (2016). Assessing tidal marsh resilience to sea-level rise at broad geographic scales with multi-metric indices. Biological Conservation, 204, 263-275. http://www.sciencedirect.com/science/article/pii/S0006320716305742

Ray, R. L., & Dogan, A. (2016). Contemporary Methods for Quantifying Submarine Groundwater Discharge to Coastal Areas. In Emerging Issues in Groundwater Resources (pp. 327-364). Springer International Publishing. http://link.springer.com/chapter/10.1007/978-3-319-32008-3_12

Sheremet, V. A., & Mora, J. W. (2016). Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers. In EGU General Assembly Conference Abstracts (Vol. 18, p. 8794). http://adsabs.harvard.edu/abs/2016EGUGA..18.8794S

Valiela, I., Owens, C., Elmstrom, E., & Lloret, J. (2016). Eutrophication of Cape Cod estuaries: Effect of decadal changes in global-driven atmospheric and local-scale wastewater nutrient loads. Marine Pollution Bulletin, 110(1), 309-315. http://www.sciencedirect.com/science/article/pii/S0025326X16304519

Walsh, J., Rowe, R. J., Olsen, B. J., Shriver, W. G., & Kovach, A. I. (2016). Genotype environment associations support a mosaic hybrid zone between two tidal marsh birds. Ecology and Evolution, 6(1), 279-294. http://onlinelibrary.wiley.com/doi/10.1002/ece3.1864/full

Wang, Z. A., Kroeger, K. D., Ganju, N. K., Gonneea, M. E., & Chu, S. N. (2016). Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnology and Oceanography, 61(5), 1916-1931. http://onlinelibrary.wiley.com/doi/10.1002/lno.10347/full


Bertness, M.D., Brisson, C.P., & Crotty, S.M. (2015). Indirect human impacts turn off reciprocal feedbacks and decrease ecosystem resilience. Oecologia, 178(1), 231-237. http://link.springer.com/article/10.1007/s00442-014-3166-5

Crosby, S.C., Ivens-Duran, M., Bertness, M.D., Davey, E., Deegan, L.A., & Leslie, H.M. (2015). Flowering and biomass allocation in US Atlantic coast Spartina alterniflora. American Journal of Botany, 102(5), 669-676.

Foster, S.Q., & Fulweiler, R.W. (2015). Corrigendum: Spatial and historic variability of benthic nitrogen cycling in an anthropogenically impacted estuary. Frontiers in Marine Science, 2, 70. http://journal.frontiersin.org/article/10.3389/fmars.2015.00070/full

Hiller, K.A., Foreman, K.H., Weisman, D., & Bowen, J.L.(2015).Permeable reactive barriers designed to mitigate eutrophication alter bacterial community composition and aquifer redox conditions.Applied and environmental microbiology, 81(20), 7114-7124. http://aem.asm.org/content/81/20/7114.short

Ishtiaq, K.S., & Abdul-Aziz, O.I. (2015).User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands. In AGU Fall Meeting Abstracts. http://adsabs.harvard.edu/abs/2015AGUFM.B21H0574I

Long, M.H., Charette, M.A., Martin, W.R., & McCorkle, D.C. (2015). Oxygen metabolism and pH in coastal ecosystems: Eddy Covariance Hydrogen ion and Oxygen Exchange System (ECHOES). Limnology and Oceanography: Methods, 13(8), 438-450. http://onlinelibrary.wiley.com/doi/10.1002/lom3.10038/full

Martin, R.M., & Moseman-Valtierra, S. (2015). Greenhouse gas fluxes vary between Phragmites australis and native vegetation zones in coastal wetlands along a salinity gradient. Wetlands, 35(6),1021-1031.http://link.springer.com/article/10.1007/s13157015-0690-y

O’Connor, A. E., Luek, J. L., McIntosh, H., & Beck, A. J. (2015). Geochemistry of redox sensitive trace elements in a shallow subterranean estuary. Marine Chemistry, 172, 70-81. http://www.sciencedirect.com/science/article/pii/S0304420315000432

Oczkowski, A., McKinney, R., Ayvazian, S., Hanson, A., Wigand, C., & Markham, E. (2015). Preliminary evidence for the amplification of global warming in shallow, intertidal estuarine waters. PloS one, 10(10), e0141529. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141529

Ramsey, J., Ruthven, T., & Griffee, S. (2015). Final Bourne’s pond inlet opening: flooding and coastal erosion analysis. https://pdfs.semanticscholar.org/3404/e86cf54d6e8525dd72a8125fe53e020139aa.pdf

Spivak, A. C. (2015). Benthic biogeochemical responses to changing estuary trophic state and nutrient availability: A paired field and mesocosm experiment approach. Limnology and Oceanography, 60(1), 3-21. http://onlinelibrary.wiley.com/doi/10.1002/lno.10001/full

Valiela, I. (2015). Primary Producers in the Sea. In Marine Ecological Processes (pp. 3-34). Springer New York. http://link.springer.com/chapter/10.1007/978-0-387-79070-1_1

Valiela, I. (2015). The Great Sippewissett salt marsh plots—some history, highlights, and contrails from a long-term study. Estuaries and Coasts, 38(4), 1099-1120. http://link.springer.com/article/10.1007/s12237-015-9976-9

Valiela, I. & Bartholomew, M. (2015) Land–sea coupling and global-driven forcing: following some of Scott Nixon’s challenges. Estuaries and Coasts 38: 1189. doi:10.1007/s12237-01498083. http://link.springer.com/article/10.1007/s12237-0149808-3

Viana, I. G., Bode, A., Bartholomew, M., & Valiela, I. (2015). Experimental assessment of the macroalgae Ascophyllum nodosum and Fucus vesiculosus for monitoring N sources at different time-scales using stable isotope composition. Journal of Experimental Marine Biology and Ecology, 466, 24-33. http://www.sciencedirect.com/science/article/pii/S0022098115000210

Walsh, Jennifer, et al. (2015) Relationship of phenotypic variation and genetic admixture in the Saltmarsh-Nelson’s sparrow hybrid zone. The Auk 132.3: 704-716. http://www.americanornithologypubs.org/?code=coop-site/10.1002/lno.10347/full